scholarly journals Ion permeation controlled by hydrophobic residues and proton binding in proton-activated chloride channel

iScience ◽  
2021 ◽  
pp. 103395
Author(s):  
Ruiqi Cai ◽  
Jingfeng Tang ◽  
Xing-Zhen Chen
1999 ◽  
Vol 114 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Yu-Wen Lin ◽  
Chia-Wei Lin ◽  
Tsung-Yu Chen

The inactivation of the ClC-0 chloride channel is very temperature sensitive and is greatly facilitated by the binding of a zinc ion (Zn2+) from the extracellular side, leading to a Zn2+-induced current inhibition. To further explore the relation of Zn2+ inhibition and the ClC-0 inactivation, we mutated all 12 cysteine amino acids in the channel and assayed the effect of Zn2+ on these mutants. With this approach, we found that C212 appears to be important for the sensitivity of the Zn2+ inhibition. Upon mutating C212 to serine or alanine, the inactivation of the channel in macroscopic current recordings disappears and the channel does not show detectable inactivation events at the single-channel level. At the same time, the channel's sensitivity to Zn2+ inhibition is also greatly reduced. The other two cysteine mutants, C213G and C480S, as well as a previously identified mutant, S123T, also affect the inactivation of the channel to some degree, but the temperature-dependent inactivation process is still present, likewise the high sensitivity of the Zn2+ inhibition. These results further support the assertion that the inhibition of Zn2+ on ClC-0 is indeed due to an effect on the inactivation of the channel. The absence of inactivation in C212S mutants may provide a better defined system to study the fast gating and the ion permeation of ClC-0.


2019 ◽  
Author(s):  
Florian Ullrich ◽  
Sandy Blin ◽  
Katina Lazarow ◽  
Tony Daubitz ◽  
Jens-Peter von Kries ◽  
...  

ABSTRACTAcid-sensing ion channels have important functions in physiology and pathology, but the molecular composition of acid-activated anion channels had remained unclear. We now used a genome-wide siRNA screen to molecularly identify the widely expressed acid-sensitive outwardly-rectifying ASOR chloride channel. ASOR is formed by TMEM206 proteins which display two transmembrane domains (TMs) and are expressed at the plasma membrane. Ion permeation-changing mutations along the length of TM2 and at the end of TM1 suggest that these segments line ASOR’s pore. While not belonging to a gene family, TMEM206 has orthologs in probably all vertebrates. Currents from evolutionarily distant orthologs share activation by protons, a feature essential for ASOR’s role in acid-induced cell death. TMEM206 defines a novel class of ion channels. Its identification will help to understand its physiological roles and the diverse ways by which anion-selective pores can be formed.


Biochemistry ◽  
1996 ◽  
Vol 35 (26) ◽  
pp. 8794-8794
Author(s):  
B.-I. Lee ◽  
E. T. Yoon ◽  
W. Cho
Keyword(s):  

2019 ◽  
Author(s):  
Huaimin Wang ◽  
Zhaoqianqi Feng ◽  
Weiyi Tan ◽  
Bing Xu

<p>Selectively targeting cell nucleolus remains a challenge. Here we report the first case that D-peptides form membraneless molecular condensates with RNA for targeting cell nucleolus. A D-peptide derivative, enriched with lysine and hydrophobic residues, self-assembles to form nanoparticles, which enter cells through clathrin dependent endocytosis and mainly accumulate at cell nucleolus. Structural analogue of the D-peptide reveals that particle morphology of the assemblies, which depends on the side chain modification, favors the cellular uptake. Contrasting to those of the D-peptide, the assemblies of the corresponding L-enantiomer largely localize in cell lysosomes. Preliminary mechanism study suggests that the D-peptide nanoparticles interact with RNA to form membraneless condensates in the nucleolus, which further induces DNA damage and results in cell death. This work illustrates a new strategy for rationally designing supramolecular assemblies of D-peptides for targeting subcellular organelles.</p>


2018 ◽  
Vol 481 (1) ◽  
pp. 104-107
Author(s):  
Yurii Balnokin ◽  
◽  
Igor Karpichev ◽  
Olga Mayorova ◽  
Olga Nedelyaeva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document