subcellular organelles
Recently Published Documents


TOTAL DOCUMENTS

332
(FIVE YEARS 68)

H-INDEX

44
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Li-av Segev-Zarko ◽  
Peter D. Dahlberg ◽  
Stella Y. Sun ◽  
Daniël M. Pelt ◽  
James A. Sethian ◽  
...  

Host cell invasion by intracellular, eukaryotic parasites, like the many important species within the phylum Apicomplexa, is a remarkable and active process involving the coordinated action of many apical organelles and other structures. To date, capturing how these various structures interact during invasion has been difficult to observe in detail. Here, we used cryogenic electron tomography to generate images of the apical complex of Toxoplasma gondii tachyzoites under conditions that mimic resting parasites and those primed to invade through addition of a calcium ionophore. Using AI-based image-processing we were able to annotate 48 tomograms to identify and extract densities of the relevant subcellular organelles and accurately analyze features in 3D. We describe an interaction between an anteriorly located apical vesicle and a rhoptry tip that occurs only in the ionophore-stimulated parasites and that is associated with dramatic changes in the vesicle's shape in what appears to be a stalled fusion event. We also present information to support the presumption that this vesicle originates from the well-described vesicles that parallel the intraconoidal microtubules and that the latter two structures are linked by a novel tether. Lastly, we show that a previously described rosette is found associated with more than just the anterior-most apical vesicle, indicating that multiple such vesicles are primed to enable rhoptry secretion.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Meiling Guan ◽  
Miaoyan Wang ◽  
Karl Zhanghao ◽  
Xu Zhang ◽  
Meiqi Li ◽  
...  

AbstractThe orientation of fluorophores can reveal crucial information about the structure and dynamics of their associated subcellular organelles. Despite significant progress in super-resolution, fluorescence polarization microscopy remains limited to unique samples with relatively strong polarization modulation and not applicable to the weak polarization signals in samples due to the excessive background noise. Here we apply optical lock-in detection to amplify the weak polarization modulation with super-resolution. This novel technique, termed optical lock-in detection super-resolution dipole orientation mapping (OLID-SDOM), could achieve a maximum of 100 frames per second and rapid extraction of 2D orientation, and distinguish distance up to 50 nm, making it suitable for monitoring structural dynamics concerning orientation changes in vivo. OLID-SDOM was employed to explore the universal anisotropy of a large variety of GFP-tagged subcellular organelles, including mitochondria, lysosome, Golgi, endosome, etc. We found that OUF (Orientation Uniformity Factor) of OLID-SDOM can be specific for different subcellular organelles, indicating that the anisotropy was related to the function of the organelles, and OUF can potentially be an indicator to distinguish normal and abnormal cells (even cancer cells). Furthermore, dual-color super-resolution OLID-SDOM imaging of lysosomes and actins demonstrates its potential in studying dynamic molecular interactions. The subtle anisotropy changes of expanding and shrinking dendritic spines in live neurons were observed with real-time OLID-SDOM. Revealing previously unobservable fluorescence anisotropy in various samples and indicating their underlying dynamic molecular structural changes, OLID-SDOM expands the toolkit for live cell research.


2021 ◽  
Vol 68 ◽  
pp. 152-161
Author(s):  
Yongshuo Ma ◽  
Jingbo Li ◽  
Sanwen Huang ◽  
Gregory Stephanopoulos

Kidney360 ◽  
2021 ◽  
pp. 10.34067/KID.0001602021
Author(s):  
Kensei Taguchi ◽  
Bertha C Elias ◽  
Evan Krystofiak ◽  
Subo Qian ◽  
Snehal Sant ◽  
...  

Background: The root of many kidney diseases in humans can be traced to alterations or damage to subcellular organelles. Mitochondrial fragmentation, ER stress and lysosomal inhibition, among others, ultimately contribute to kidney injury and are the target of therapeutics in development. While recent technological advancements allow for the understanding of disease states at the cellular level, investigating changes in subcellular organelles from kidney tissue remains challenging. Methods: Using structured illumination microscopy, we imaged mitochondria and other organelles from paraffin sections of mouse tissue and human kidney biopsies. The resulting images were 3D rendered to quantify mitochondrial size, content, and morphology. Results were compared to transmission electron microscopy and segmentation. Results: Super-resolution imaging reveals kidney tubular epithelial cell mitochondria in rodent and human kidney tissue form large, interconnected networks under basal conditions, which are fragmented with injury. This approach can be expanded to other organelles and cellular structures including autophagosomes, endoplasmic reticulum (ER), brush border and cell morphology. We find that during unilateral ischemia, mitochondrial fragmentation occurs in most tubule cells and remain fragmented for over 96 hours. Promoting mitochondrial fusion with the fusion promotor M1 preserves mitochondrial morphology and interconnectivity and protects against cisplatin-induced kidney injury. Conclusions: We provide for the first time a non-biased, semi-automated approach for quantification of the 3D morphology of mitochondria in kidney tissue. Maintaining mitochondrial interconnectivity and morphology protects against kidney injury. Super-resolution imaging has the potential to both drive discovery of novel pathobiological mechanisms in kidney tissue and broaden the diagnoses that can be made on human biopsies.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1382
Author(s):  
Marta Redrado ◽  
Andrea Benedi ◽  
Isabel Marzo ◽  
M. Concepción Gimeno ◽  
Vanesa Fernández-Moreira

Photodynamic therapy (PDT) is a cancer treatment still bearing enormous prospects of improvement. Within the toolbox of PDT, developing photosensitizers (PSs) that can specifically reach tumor cells and promote the generation of high concentration of reactive oxygen species (ROS) is a constant research goal. Mitochondria is known as a highly appealing target for PSs, thus being able to assess the biodistribution of the PSs prior to its light activation would be crucial for therapeutic maximization. Bifunctional Ir(III) complexes of the type [Ir(C^N)2(N^N-R)]+, where N^C is either phenylpyridine (ppy) or benzoquinoline (bzq), N^N is 2,2′-dipyridylamine (dpa) and R either anthracene (1 and 3) or acridine (2 and 4), have been developed as novel trackable PSs agents. Activation of the tracking or therapeutic function could be achieved specifically by irradiating the complex with a different light wavelength (405 nm vs. 470 nm respectively). Only complex 4 ([Ir(bzq)2(dpa-acr)]+) clearly showed dual emissive pattern, acridine based emission between 407–450 nm vs. Ir(III) based emission between 521 and 547 nm. The sensitivity of A549 lung cancer cells to 4 evidenced the importance of involving the metal center within the activation process of the PS, reaching values of photosensitivity over 110 times higher than in dark conditions. Moreover, complex 4 promoted apoptotic cell death and possibly the paraptotic pathway, as well as higher ROS generation under irradiation than in dark conditions. Complexes 2–4 accumulated in the mitochondria but species 2 and 4 also localizes in other subcellular organelles.


2021 ◽  
Vol 22 (16) ◽  
pp. 9092
Author(s):  
Shabnam Tarvirdipour ◽  
Michal Skowicki ◽  
Cora-Ann Schoenenberger ◽  
Cornelia G. Palivan

Concerns associated with nanocarriers’ therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hannah T. Perkins ◽  
Victoria J. Allan ◽  
Thomas A. Waigh

AbstractThe endoplasmic reticulum (ER) is a eukaryotic subcellular organelle composed of tubules and sheet-like areas of membrane connected at junctions. The tubule network is highly dynamic and undergoes rapid and continual rearrangement. There are currently few tools to evaluate network organisation and dynamics. We quantified ER network organisation in Vero and MRC5 cells, and developed an analysis workflow for dynamics of established tubules in live cells. The persistence length, tubule length, junction coordination number and angles of the network were quantified. Hallmarks of imbalances in ER tension, indications of interactions with microtubules and other subcellular organelles, and active dynamics were observed. Clear differences in dynamic behaviour were observed for established tubules at different positions within the cell using itemset mining. We found that tubules with activity-driven fluctuations were more likely to be located away from the cell periphery and a population of peripheral tubules with no signs of active motion was found.


Sign in / Sign up

Export Citation Format

Share Document