Characterizing urban land changes of 30 global megacities using nighttime light time series stacks

2021 ◽  
Vol 173 ◽  
pp. 10-23 ◽  
Author(s):  
Qiming Zheng ◽  
Qihao Weng ◽  
Ke Wang
2021 ◽  
Vol 13 (4) ◽  
pp. 766
Author(s):  
Yuanmao Zheng ◽  
Qiang Zhou ◽  
Yuanrong He ◽  
Cuiping Wang ◽  
Xiaorong Wang ◽  
...  

Quantitative and accurate urban land information on regional and global scales is urgently required for studying socioeconomic and eco-environmental problems. The spatial distribution of urban land is a significant part of urban development planning, which is vital for optimizing land use patterns and promoting sustainable urban development. Composite nighttime light (NTL) data from the Defense Meteorological Program Operational Line-Scan System (DMSP-OLS) have been proven to be effective for extracting urban land. However, the saturation and blooming within the DMSP-OLS NTL hinder its capacity to provide accurate urban information. This paper proposes an optimized approach that combines NTL with multiple index data to overcome the limitations of extracting urban land based only on NTL data. We combined three sources of data, the DMSP-OLS, the normalized difference vegetation index (NDVI), and the normalized difference water index (NDWI), to establish a novel approach called the vegetation–water-adjusted NTL urban index (VWANUI), which is used to rapidly extract urban land areas on regional and global scales. The results show that the proposed approach reduces the saturation of DMSP-OLS and essentially eliminates blooming effects. Next, we developed regression models based on the normalized DMSP-OLS, the human settlement index (HSI), the vegetation-adjusted NTL urban index (VANUI), and the VWANUI to analyze and estimate urban land areas. The results show that the VWANUI regression model provides the highest performance of all the models tested. To summarize, the VWANUI reduces saturation and blooming, and improves the accuracy with which urban areas are extracted, thereby providing valuable support and decision-making references for designing sustainable urban development.


2020 ◽  
Vol 12 (10) ◽  
pp. 1675
Author(s):  
Jieying Lao ◽  
Cheng Wang ◽  
Jinliang Wang ◽  
Feifei Pan ◽  
Xiaohuan Xi ◽  
...  

With the implementation processes of strategies such as Guangdong-Hong Kong-Macau Greater Bay Area’s coordinated development and “Belt and Road Initiative” initiative, the planning policies had produced a significant influence on land use distributions in Guangzhou. In this paper, we employ nighttime light (NTL) information as a proxy indicator of gross domestic product(GDP), and a future land use simulation model (FLUS) to simulate the land use patterns in Guangzhou from 2015 to 2018 and 2018 to 2035 by incorporating planning policies. The results show that: (1) the accuracy of simulation result from 2015 to 2018 based on National Polar-orbiting Partnership, Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) is higher than that based on GDP; (2) by incorporating planning policies into the model can better identify the potential spatial distribution of urban land and make the simulated results more consistent with the actual urban land development trajectory. This study demonstrates that NTL is a suitable and feasible proxy indicator of GDP for the land use simulations, providing a scientific basis for the development of urban planning and construction policy.


Author(s):  
Zuoqi Chen ◽  
Bailang Yu ◽  
Yuyu Zhou ◽  
Hongxing Liu ◽  
Chengshu Yang ◽  
...  

2021 ◽  
Vol 13 (21) ◽  
pp. 4288
Author(s):  
Zherui Yin ◽  
Wenhui Kuang ◽  
Yuhai Bao ◽  
Yinyin Dou ◽  
Wenfeng Chi ◽  
...  

Dramatic urban land expansion and its internal sub-fraction change during 2000–2020 have taken place in Africa; however, the investigation of their spatial heterogeneity and dynamic change monitoring at the continental scale are rarely reported. Taking the whole of Africa as a study area, the synergic approach of normalized settlement density index and random forest was applied to assess urban land and its sub-land fractions (i.e., impervious surface area and vegetation space) in Africa, through time series of remotely sensed images on a cloud computing platform. The generated 30-m resolution urban land/sub-land products displayed good accuracy, with comprehensive accuracy of over 90%. During 2000–2020, the evaluated urban land throughout Africa increased from 1.93 × 104 km2 to 4.18 × 104 km2, with a total expansion rate of 116.49%, and the expanded urban area of the top six countries accounted for more than half of the total increments, meaning that the urban expansion was concentrated in several major countries. A turning green Africa was observed, with a continuously increasing ratio of vegetation space to built-up area and a faster increment of vegetation space than impervious surface area (i.e., 134.43% vs., 108.88%) within urban regions. A better living environment was also found in different urbanized regions, as the newly expanded urban area was characterized by lower impervious surface area fraction and higher vegetation fraction compared with the original urban area. Similarly, the humid/semi-humid regions also displayed a better living environment than arid/semi-arid regions. The relationship between socioeconomic development factors (i.e., gross domestic product and urban population) and impervious surface area was investigated and both passed the significance test (p < 0.05), with a higher fit value in the former than the latter. Overall, urban land and its fractional land cover change in Africa during 2000–2020 promoted the well-being of human settlements, indicating the positive effect on environments.


Sign in / Sign up

Export Citation Format

Share Document