Hysteretic behavior of T-shaped walls reinforced by high-strength bars: Cyclic loading tests and modelling

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 1376-1393
Author(s):  
Xiangyong Ni
2012 ◽  
Vol 256-259 ◽  
pp. 2079-2084 ◽  
Author(s):  
Tie Cheng Wang ◽  
An Gao ◽  
Hai Long Zhao

The influence of the pile type and the stirrup on the seismic performance was evaluated based on the results of reversed cyclic loading tests on the four prestressed high strength concrete (PHC) piles. It is indicated that the AB-type pile has the better seismic performance than the A-type pile from the results. The bearing capacity does not increase obviously with decreasing of the stirrup spacing and increasing of the stirrup diameter. The degradation of stiffness does not decrease significantly with decreasing of the stirrup spacing and increasing of the stirrup diameter. The energy dissipation capacity is improved with increasing of the stirrup diameter and decreasing of the stirrup spacing.


2020 ◽  
pp. 136943322096174
Author(s):  
Wei-ding Zhuo ◽  
Suiwen Wu ◽  
Zhao Liu ◽  
Hua Zang

Reinforced concrete bridge piers are extremely vulnerable to damage during long-duration ground excitations or main shock-aftershock type earthquakes due to accumulated damage caused by a great number of reversed excursions in elastic-plastic range. However, few studies on fatigue damage of piers can be found in literature. Low-cyclic loading tests of four identical RC bridge piers with high-strength rebar HRB600E (yield strength about 600 MPa) were carried out in this study. One of specimens was taken as the benchmark and was subjected to a conventional load protocol, and the rest was subjected to one, two and three times yield displacement, respectively. The research results showed that the fatigue strength of RC bridge piers tended to drop drastically at about ten cycles and then slowed down gently. It was found that strength degradation rate increased significantly with the displacement amplitude for fatigue tests while the fatigue life decreased dramatically with the displacement amplitude. In particular, when the cyclic loading displacement exceeded 2 times the yield displacement, the fatigue life dropped dramatically. Based on the experimental data, an exponential-type damage model was proposed with the peak lateral force at the first cycle as the coefficient, the cycle count as the base and factor of the loading displacement amplitude as the exponent, which could accurately predict the degraded lateral force of the bridge piers at different constant drifts. An accumulative fatigue damage index was established to evaluate the damage level of bridge piers.


2019 ◽  
Vol 25 (60) ◽  
pp. 655-659
Author(s):  
Shuzo HIROISHI ◽  
Akira OKADA ◽  
Naoya MIYASATO ◽  
Noburu NAKAMURA ◽  
Kenichi MAMURO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document