Experimental and numerical study of continuous span concrete composite slabs

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 827-839
Author(s):  
Jianbo Tian ◽  
Mengmeng Wang ◽  
Jie Liu ◽  
Hongchao Guo ◽  
Zhenshan Wang ◽  
...  
2016 ◽  
Vol 20 (10) ◽  
pp. 1451-1465 ◽  
Author(s):  
Shou-Chao Jiang ◽  
Gianluca Ranzi ◽  
Ling-Zhu Chen ◽  
Guo-Qiang Li

This article presents an extensive experimental and numerical study aimed at the evaluation of the thermo-structural response of composite beams with composite slabs. Two full-scale fire tests were carried out on simply supported composite steel-concrete beams with steel sheeting perpendicular and parallel to the steel joist, respectively. Both specimens were observed to fail by developing large displacements. Concrete crushing at the mid-span, debonding of the profiled sheeting and spalling of the fire protection were observed during both tests. A three-dimensional finite element model was developed in ABAQUS, and its accuracy was validated against the experimental measurements collected as part of this study. The model was then used to perform a parametric study to determine the influence of the degree of shear connection, load ratio and design fire rate on the structural response of composite beams at elevated temperatures. These results, together with experimental data available in the literature, were used to evaluate the ability of European guidelines to predict the critical temperature of composite beams. It was shown that predictions from Eurocode 4 were safe and provided conservative estimates for most cases.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 219
Author(s):  
Xuefeng Zhang ◽  
Huiming Li ◽  
Shixue Liang ◽  
Hao Zhang

This paper studies the behavior of lattice girder composite slabs with monolithic joint under bending. A full-scale experiment is performed to investigate the overall bending resistance, deflection and the final crack distribution of latticed girder composite slab under uniformly distributed load. A finite element model is given for the analysis of the latticed girder composite slabs. The effectiveness and correctness of the numerical simulations are verified against experimental results. The experimental and numerical studies conclude that the lattice girder composite slabs conform to the requirement of existing design codes. A parametric study is provided to investigate the effects of lattice girder with following conclusions: (a) the lattice girder significantly increases the stiffness of the slab when comparing with the precast slab without reinforcement crossing the interface; (b) the additional reinforcement near the joint slightly increases the stiffness and resistance, while it prevents damage near the joint.


2015 ◽  
Vol 115 ◽  
pp. 372-386 ◽  
Author(s):  
Mohammad M. Rana ◽  
Brian Uy ◽  
Olivia Mirza

1998 ◽  
Vol 77 (2) ◽  
pp. 473-484 ◽  
Author(s):  
M. Sampoli, P. Benassi, R. Dell'Anna,

Sign in / Sign up

Export Citation Format

Share Document