Incorporating the unevenness of lane truck loading into fatigue load modeling of multi-lane bridges

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 1746-1760
Author(s):  
Junyong Zhou ◽  
Cuimin Hu ◽  
Junping Zhang ◽  
Haiyun Huang
1998 ◽  
Author(s):  
Christoph Leser ◽  
Lokesh Juneja ◽  
Surot Thangjitham ◽  
Norman E. Dowling

2006 ◽  
Vol 1 (4) ◽  
Author(s):  
Huub H.J. Cox ◽  
Steve Fan ◽  
Reza Iranpour

Terminal Island Treatment Plant converted its digesters to thermophilic operation with the objective to comply with the U.S. EPA Part 503 Biosolids Rule requirements for Class A biosolids. The following processes were tested: a) single-stage continuous; b) two-stage continuous; c) single-stage sequencing batch. Salmonella sp. were always non-detect in digester outflows (<3 MPN/4 g dry wt), whereas fecal coliform densities were usually below the Class A limit of 1000 MPN/g dry wt. However, the recurrence of fecal coliforms in post-digestion caused non-compliance with the Class A limit at the truck loading facility as the last point of plant control for compliance. After several design modifications of the post-digestion train, operation of the digesters as sequencing batch digesters according to the time-temperature requirement of Alternative 1 of the Part 503 Biosolids Rule achieved compliance for both Salmonella sp. and fecal coliforms at the last point of plant control (truck loading facility).


2021 ◽  
pp. 1-12
Author(s):  
Omid Izadi Ghafarokhi ◽  
Mazda Moattari ◽  
Ahmad Forouzantabar

With the development of the wide-area monitoring system (WAMS), power system operators are capable of providing an accurate and fast estimation of time-varying load parameters. This study proposes a spatial-temporal deep network-based new attention concept to capture the dynamic and static patterns of electrical load consumption through modeling complicated and non-stationary interdependencies between time sequences. The designed deep attention-based network benefits from long short-term memory (LSTM) based component to learning temporal features in time and frequency-domains as encoder-decoder based recurrent neural network. Furthermore, to inherently learn spatial features, a convolutional neural network (CNN) based attention mechanism is developed. Besides, this paper develops a loss function based on a pseudo-Huber concept to enhance the robustness of the proposed network in noisy conditions as well as improve the training performance. The simulation results on IEEE 68-bus demonstrates the effectiveness and superiority of the proposed network through comparison with several previously presented and state-of-the-art methods.


2021 ◽  
Vol 3 (2) ◽  
pp. 158-167
Author(s):  
Robert “Bobby” Grisso ◽  
John Cundiff ◽  
Subhash C. Sarin

A multi-bale handling unit offers an advantage for the efficient hauling of round bales. Two empty racks on trailers are left at a satellite storage location for loading while a truck tractor delivers two loaded racks to the biorefinery, thus uncoupling the loading and hauling operations and increasing the efficiency of both. The projected 10 min trailer exchange time equals the projected 10 min unload time at the biorefinery achieved by lifting off the two full racks and replacing them with two empties, a technology adapted from the container shipping industry. A concept is presented for a bale loader that latches onto the rack/trailer and loads bales into the bottom tier chambers. This machine will load 10 bales into the rack on the front trailer by attaching on to the front of the trailer and 10 bales into the rear trailer by attaching onto the rear. A telehandler removes bales from single-layer storage and places them in the bale loader to load the bottom tier compartments. The top tier compartments are loaded directly from the top. Expectations are that an experienced operator can average 9 loads in a 10 h workday, and load-out cost is estimated as 3.61 USD/Mg, assuming the average achieved load-out productivity over annual operation is 60% of optimum productivity (24 Mg/h) equal to 14.4 Mg/h. Cost increases to 4.81 USD/Mg when the productivity factor drops to 45%, and cost is 3.09 USD/Mg for a factor of 70%.


Sign in / Sign up

Export Citation Format

Share Document