A new energy balance-based method for evaluating seismic performance of isolated bridges under near-fault ground motions

Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 3724-3737
Author(s):  
Zhongying He ◽  
Heng Yang ◽  
Jinyong Zhu ◽  
Yutao Pang
2019 ◽  
Vol 35 (3) ◽  
pp. 1109-1140 ◽  
Author(s):  
Yi-feng Wu ◽  
Hao Wang ◽  
Jian Li ◽  
Ben Sha ◽  
Ai-qun Li

A variety of research has focused on the inelastic displacement demand of a single degree of freedom (SDOF) system when subjected to near-fault pulse-like ground motions, in which the concerned ductility, μ, is typically lower than ten for normal structures. However, for seismic isolated structures that are more prone to large displacement, the corresponding research is limited. The purpose of this paper is to investigate the inelastic displacement spectra of an SDOF system with μ ranging from 5 to 70 and further proposes a direct displacement-based (DDB) design method for seismic isolated bridges. More concretely, a pool of near-fault pulse-like records is assembled, the mean C μ as a function of T/ T p is developed, and the influences of the ductility, μ, and the post-to-pre-yield ratio, α, on C μ are carefully investigated. Then the corresponding inelastic displacement spectra, S d, are obtained, and a comprehensive piecewise expression is proposed to fit S d. After that, the utilization of the spectra for the DDB design of a three-span seismic isolated continuous bridge is performed, and the principal of simplifying the bridge to an SDOF system is carefully explained and verified.


2013 ◽  
Vol 29 (4) ◽  
pp. 1477-1494 ◽  
Author(s):  
Zhe Qu ◽  
Shoichi Kishiki ◽  
Toshiyuki Nakazawa

The pounding of retaining walls forms a potential risk of degrading the performance of seismically base-isolated buildings subjected to strong, especially near-fault, earthquake ground motions. Incremental dynamic analysis is employed to generate the so-called gap graph, in which two characteristic gap sizes of a base-isolated building are related with the isolation period of the building and the strengthof the superstructure. Thegapgraph canbe usedto evaluate the required gap size for a base-isolated building to have certain collapse performance. By means of gap graphs, the interdependent relations of gap size with other important factors that influence the seismic performance of the base-isolated building are examined. In particular, the results show that near-fault pulse-like ground motions are likely to impose much higher demand for the isolation gap than far-field ones.


Sign in / Sign up

Export Citation Format

Share Document