scholarly journals Fundamental group schemes of some Quot schemes on a smooth projective curve

2020 ◽  
Vol 562 ◽  
pp. 290-305
Author(s):  
Chandranandan Gangopadhyay ◽  
Ronnie Sebastian
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

Abstract We define and study the motive of the moduli stack of vector bundles of fixed rank and degree over a smooth projective curve in Voevodsky’s category of motives. We prove that this motive can be written as a homotopy colimit of motives of smooth projective Quot schemes of torsion quotients of sums of line bundles on the curve. When working with rational coefficients, we prove that the motive of the stack of bundles lies in the localizing tensor subcategory generated by the motive of the curve, using Białynicki-Birula decompositions of these Quot schemes. We conjecture a formula for the motive of this stack, inspired by the work of Atiyah and Bott on the topology of the classifying space of the gauge group, and we prove this conjecture modulo a conjecture on the intersection theory of the Quot schemes.


Author(s):  
Oscar García-Prada ◽  
S. Ramanan

This chapter considers the moduli space of rank 2 Higgs bundles with fixed determinant over a smooth projective curve X of genus 2 over ℂ, and studies involutions defined by tensoring the vector bundle with an element α‎ of order 2 in the Jacobian of the curve, combined with multiplication of the Higgs field by ±1. It describes the fixed points of these involutions in terms of the Prym variety of the covering of X defined by α‎, and gives an interpretation in terms of the moduli space of representations of the fundamental group.


2018 ◽  
Vol 5 (1) ◽  
pp. 146-149
Author(s):  
Sujoy Chakraborty ◽  
Arjun Paul

Abstract Let X be an irreducible smooth projective curve of genus g ≥ 2 over ℂ. Let MG, Higgsδbe a connected reductive affine algebraic group over ℂ. Let Higgs be the moduli space of semistable principal G-Higgs bundles on X of topological type δ∈π1(G). In this article,we compute the fundamental group and Picard group of


2019 ◽  
Vol 30 (12) ◽  
pp. 1950067
Author(s):  
Manish Kumar ◽  
A. J. Parameswaran

We define formal orbifolds over an algebraically closed field of arbitrary characteristic as curves together with some branch data. Their étale coverings and their fundamental groups are also defined. These fundamental groups approximate the fundamental group of an appropriate affine curve. We also define vector bundles on these objects and the category of orbifold bundles on any smooth projective curve. Analogues of various statements about vector bundles which are true in characteristic zero are also proved. Some of these are positive characteristic avatars of notions which appear in the second author’s work [A. J. Parmeswaran, Parabolic coverings I: Case of curves, J. Ramanujam Math. Soc. 25(3) (2010) 233–251.] in characteristic zero.


2021 ◽  
Vol 359 (8) ◽  
pp. 999-1022
Author(s):  
Chandranandan Gangopadhyay ◽  
Ronnie Sebastian

2020 ◽  
Vol Volume 4 ◽  
Author(s):  
Kirti Joshi ◽  
Christian Pauly

In this paper we continue our study of the Frobenius instability locus in the coarse moduli space of semi-stable vector bundles of rank $r$ and degree $0$ over a smooth projective curve defined over an algebraically closed field of characteristic $p>0$. In a previous paper we identified the "maximal" Frobenius instability strata with opers (more precisely as opers of type $1$ in the terminology of the present paper) and related them to certain Quot-schemes of Frobenius direct images of line bundles. The main aim of this paper is to describe for any integer $q \geq 1$ a conjectural generalization of this correspondence between opers of type $q$ (which we introduce here) and Quot-schemes of Frobenius direct images of vector bundles of rank $q$. We also give a conjectural formula for the dimension of the Frobenius instability locus. Comment: 17 pages; Final version Epijournal de G'eom'etrie Alg'ebrique, Volume 4 (2020), Article Nr. 17


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


2018 ◽  
Vol 167 (01) ◽  
pp. 61-64 ◽  
Author(s):  
INDER KAUR

AbstractLet K be a field of characteristic 0. Fix integers r, d coprime with r ⩾ 2. Let XK be a smooth, projective, geometrically connected curve of genus g ⩾ 2 defined over K. Assume there exists a line bundle ${\cal L}_K$ on XK of degree d. In this paper we prove the existence of a stable locally free sheaf on XK with rank r and determinant ${\cal L}_K$. This trivially proves the C1 conjecture in mixed characteristic for the moduli space of stable locally free sheaves of fixed rank and determinant over a smooth, projective curve.


2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


Sign in / Sign up

Export Citation Format

Share Document