Lie algebras graded by the weight system (Θ ,sl)

2021 ◽  
Vol 581 ◽  
pp. 1-44
Author(s):  
Alexander Baranov ◽  
Hogir M. Yaseen
Keyword(s):  
2003 ◽  
Vol 12 (05) ◽  
pp. 589-604
Author(s):  
Hideaki Nishihara

Weight systems are constructed with solvable Lie algebras and their infinite dimensional representations. With a Heisenberg Lie algebra and its polynomial representations, the derived weight system vanishes on Jacobi diagrams with positive loop-degree on a circle, and it is proved that the derived knot invariant is the inverse of the Alexander-Conway polynomial.


2001 ◽  
Vol 10 (01) ◽  
pp. 161-169 ◽  
Author(s):  
E. SOBOLEVA

We study the 4-bialgebra of graphs and the bialgebra of 4-invariants introduced by S. K. Lando. Our main goal is the investigation of the relationship between 4-invariants of graphs and weight systems arising in the theory of finite order invariants of knots. In particular, we show that the corank of the adjacency matrix of a graph leads to the weight system coming from the defining representation of the Lie algebra gl(N).


Author(s):  
Josi A. de Azcárraga ◽  
Josi M. Izquierdo
Keyword(s):  

2018 ◽  
Vol 2018 (2) ◽  
pp. 43-49
Author(s):  
R.K. Gaybullaev ◽  
Kh.A. Khalkulova ◽  
J.Q. Adashev

2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2018 ◽  
Vol 13 (3) ◽  
pp. 59-63 ◽  
Author(s):  
D.T. Siraeva

Equations of hydrodynamic type with the equation of state in the form of pressure separated into a sum of density and entropy functions are considered. Such a system of equations admits a twelve-dimensional Lie algebra. In the case of the equation of state of the general form, the equations of gas dynamics admit an eleven-dimensional Lie algebra. For both Lie algebras the optimal systems of non-similar subalgebras are constructed. In this paper two partially invariant submodels of rank 3 defect 1 are constructed for two-dimensional subalgebras of the twelve-dimensional Lie algebra. The reduction of the constructed submodels to invariant submodels of eleven-dimensional and twelve-dimensional Lie algebras is proved.


2020 ◽  
Vol 224 (3) ◽  
pp. 987-1008
Author(s):  
José Manuel Casas ◽  
Xabier García-Martínez

2016 ◽  
Vol 45 (1) ◽  
pp. 105-120 ◽  
Author(s):  
Qinxiu Sun ◽  
Hongliang Li
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document