Effect of speed-ratio on microstructure, and mechanical properties of Mg–3Al–1Zn alloy, in differential speed rolling

2011 ◽  
Vol 509 (34) ◽  
pp. 8510-8517 ◽  
Author(s):  
W.J. Kim ◽  
B.G. Hwang ◽  
M.J. Lee ◽  
Y.B. Park
2012 ◽  
Vol 56 (2) ◽  
pp. 111 ◽  
Author(s):  
Kristóf Bobor ◽  
Zoltán Hegedűs ◽  
Jenő Gubicza ◽  
István Barkai ◽  
Péter Pekker ◽  
...  

2007 ◽  
Vol 561-565 ◽  
pp. 287-290
Author(s):  
Kazutaka Suzuki ◽  
Xin Sheng Huang ◽  
Akira Watazu ◽  
Ichinori Shigematsu ◽  
Naobumi Saito

It was reported that the cold and warm press formability of the magnesium alloy was improved by the application of a differential speed rolling (DSR). However, it can be considered that the microstructure and the texture of the DSR processed sheets greatly change with the rolling conditions. In this study, commercial AZ31B magnesium alloy extrusions were processed by DSR at a differential speed ratio of 1.167 and a reduction per pass of 10% or less, and the effects of the rolling temperature, the number of rolling passes and reversal of the rolling direction on texture and mechanical properties were examined. As a result, it was found that the optimal rolling temperature in terms of the workability and formability of the material was 573 K. And the elongation and formability were maximal in sheets processed by 4–6 passes of DSR. Moreover, reversing the shear direction made the microstructure more homogeneous and finer than unidirectional shear, and improved the mechanical properties and formability. This improvement was greater in samples where the shear direction was reversed once in the middle than where it was reversed for each pass.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4159 ◽  
Author(s):  
Ahmad Bahmani ◽  
Woo-Jin Kim

A differential speed rolling (DSR) technique that provides capability of producing large-scale materials with fine grains and controlled texture in a continuous manner has attracted several researchers and industries. In this study, we tried to review the articles related to DSR and especially the high-ratio DSR (HRDSR) technique that is associated with a high speed ratio between the upper and lower rolls (≥2) and compare the change in microstructure and mechanical properties after HRDSR with the results obtained by using other severe plastic deformation (SPD) techniques to see the potential of the HRDSR technique in enhancing the mechanical properties of metals and metal matrix composites. The reviewed results show that HRDSR is an important technique that can effectively refine the grains to micro or nano sizes and uniformly disperse the particles or reinforcement throughout the matrix, which helps extensively in improving ambient and superplastic mechanical properties of various metals and alloys.


Sign in / Sign up

Export Citation Format

Share Document