Hydrostatic pressure effects on martensitic transition, magnetic and magnetocaloric effect in Si doped Ni–Mn–Sn Heusler alloys

2014 ◽  
Vol 584 ◽  
pp. 175-179 ◽  
Author(s):  
S. Esakki Muthu ◽  
M. Kanagaraj ◽  
Sanjay Singh ◽  
P.U. Sastry ◽  
G. Ravikumar ◽  
...  
2020 ◽  
Vol 308 ◽  
pp. 113821
Author(s):  
Wenjian Shi ◽  
Fenghua Chen ◽  
Jian Liu ◽  
Haicheng Xuan ◽  
Rui Zhang ◽  
...  

2008 ◽  
Vol 52 ◽  
pp. 189-197 ◽  
Author(s):  
Xavier Moya ◽  
Lluís Mañosa ◽  
Antoni Planes ◽  
Seda Aksoy ◽  
Mehmet Acet ◽  
...  

In this paper, we discuss the possibility of inducing a martensitic transition by means of an applied magnetic field or hydrostatic pressure in Ni-Mn based Heusler shape memory alloys. We report on the shift of the martensitic transition temperatures with applied magnetic field and applied pressure and we show that it is possible to induce the structural transformation in a Ni50Mn34In16 alloy by means of both external fields due to: (i) the low value of the entropy change and (ii) the large change of magnetization and volume, which occur at the martensitic transition.


2011 ◽  
Vol 110 (8) ◽  
pp. 083902 ◽  
Author(s):  
S. Esakki Muthu ◽  
N. V. Rama Rao ◽  
M. Manivel Raja ◽  
S. Arumugam ◽  
K. Matsubayasi ◽  
...  

2008 ◽  
Vol 52 ◽  
pp. 221-228 ◽  
Author(s):  
Antoni Planes ◽  
Lluís Mañosa ◽  
Xavier Moya ◽  
Jordi Marcos ◽  
Mehmet Acet ◽  
...  

In this paper, we discuss the magnetocaloric behavior of Ni-Mn-based Heusler alloys in rela- tion to their shape-memory and superelastic properties. We show that the magnetocaloric effect in these materials originates from two different contributions: (i) the coupling that is related to a strong uniaxial magnetic anisotropy and takes place at the length scale of martensite variants and magnetic domains (extrinsic effect), and (ii) the intrinsic microscopic magnetostructural coupling. The first contribution is intimately related to the magnetically induced rearrange- ment of martensite variants (magnetic shape-memory) and controls the magnetocaloric effect at small applied fields, while the latter is dominant at higher fields and is essentially related to the possibility of magnetically inducing the martensitic transition (magnetic superelasticity). The possibility of inverse magnetocaloric effect associated with these two contributions is also considered.


Sign in / Sign up

Export Citation Format

Share Document