Highly thermally conductive nanocomposites synthesized by PVD for thermal management applications

2020 ◽  
Vol 825 ◽  
pp. 153917 ◽  
Author(s):  
Xiaopeng Han ◽  
Ying Huang ◽  
Jing Yan ◽  
Yade Zhu ◽  
Xiaogang Gao
2021 ◽  
Vol 16 (2) ◽  
pp. 042-047
Author(s):  
Yanfei Bian ◽  
SHI Jian-zhou ◽  
XIE Ming-jun ◽  
CAI Meng

Annealed pyrolytic graphite (APG) is a material with thermal conductivity of about 1500 W/(m·K). This property may enable the usage of APG’s thermal potential to develop highly thermally conductive composites for devices requiring effective thermal management. In this paper, APG has been encapsulated in aluminum by brazing, and the thermal properties of Al-APG composite baseplates were measured. The results show that the thermal conductivity of the Al-APG composite baseplates is about 620 W/(m·K), which is four times higher than the pure aluminum plate (152 W/(m·K)).


Author(s):  
Na Song ◽  
Donglei Cao ◽  
Xian Luo ◽  
Qi Wang ◽  
Peng Ding ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (23) ◽  
pp. 11360-11368 ◽  
Author(s):  
Hao Yuan ◽  
Yang Wang ◽  
Ting Li ◽  
Yijie Wang ◽  
Piming Ma ◽  
...  

Efficient heat removal via thermal management materials has become one of the most critical challenges in the development of modern microelectronic devices.


2017 ◽  
Vol 5 (2) ◽  
pp. 1700946 ◽  
Author(s):  
Chang-Ping Feng ◽  
Lu Bai ◽  
Yan Shao ◽  
Rui-Ying Bao ◽  
Zheng-Ying Liu ◽  
...  

Nanoscale ◽  
2016 ◽  
Vol 8 (46) ◽  
pp. 19326-19333 ◽  
Author(s):  
Zhi Yang ◽  
Lihui Zhou ◽  
Wei Luo ◽  
Jiayu Wan ◽  
Jiaqi Dai ◽  
...  

2021 ◽  
Author(s):  
Xiaoting Liu ◽  
Kai Pang ◽  
Yingjun Liu ◽  
Chao Gao ◽  
Zhen Xu

Abstract Constructing conductive filler networks with high efficiency is essential to fabricating functional polymer composites. Although two-dimensional (2D) sheets have prevailed in nanocomposites, their efficiency in enhancing conductive functions seems to reach the limit, as if merely addressing the dispersion homogeneity. Here, we exploit the unrecognized geometrical curvature of 2D sheets to break the efficiency limit of filler systems. The hyperbolic curvature meditates the incompatibility between 2D topology and 3D filler space and holds the efficient conductive path through face-to-face contact. The hyperbolic graphene framework exhibits the record efficiency in enhancing electrically and thermally conductive functions of nanocomposites. At volume loading of only 1.6%, the thermal and electrical conductivities reach 31.6 W/(mK) and 13,911 S/m, respectively. Nanocomposites with hyperbolic graphene framework exhibit great potentials in thermal management, sensing and electromagnetic shielding. Our work presents a geometrically optimal filler system to break the efficiency limit of multifunctional nanocomposites and broadens the structural design space of 2D sheets by curvature modulation to meet more applications.


Sign in / Sign up

Export Citation Format

Share Document