Thermally conductive polymer nanocomposites for thermal management of electronic packaging

Author(s):  
Ismail Hakki Tavman ◽  
Tuba Evgin
Author(s):  
Baojie Wei ◽  
xi cheng ◽  
Shuangqiao Yang

Ceramic-based polymer composites with high thermal conductivity and electrically insulation has been wildly used in modern electrical systems for thermal management application. Compared with ceramic materials, metals usually exhibit better...


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3337
Author(s):  
Md. Abdul Alim ◽  
Mohd Zulkifly Abdullah ◽  
Mohd Sharizal Abdul Aziz ◽  
R. Kamarudin ◽  
Prem Gunnasegaran

The application of epoxy adhesive is widespread in electronic packaging. Epoxy adhesives can be integrated with various types of nanoparticles for enhancing thermal conductivity. The joints with thermally conductive adhesive (TCA) are preferred for research and advances in thermal management. Many studies have been conducted to increase the thermal conductivity of epoxy-based TCAs by conductive fillers. This paper reviews and summarizes recent advances of these available fillers in TCAs that contribute to electronic packaging. It also covers the challenges of using the filler as a nano-composite. Moreover, the review reveals a broad scope for future research, particularly on thermal management by nanoparticles and improving bonding strength in electronic packaging.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13 ◽  
Author(s):  
Kunpeng Ruan ◽  
Yongqiang Guo ◽  
Chuyao Lu ◽  
Xuetao Shi ◽  
Tengbo Ma ◽  
...  

The developing flexible electronic equipment are greatly affected by the rapid accumulation of heat, which is urgent to be solved by thermally conductive polymer composite films. However, the interfacial thermal resistance (ITR) and the phonon scattering at the interfaces are the main bottlenecks limiting the rapid and efficient improvement of thermal conductivity coefficients (λ) of the polymer composite films. Moreover, few researches were focused on characterizing ITR and phonon scattering in thermally conductive polymer composite films. In this paper, graphene oxide (GO) was aminated (NH2-GO) and reduced (NH2-rGO), then NH2-rGO/polyimide (NH2-rGO/PI) thermally conductive composite films were fabricated. Raman spectroscopy was utilized to innovatively characterize phonon scattering and ITR at the interfaces in NH2-rGO/PI thermally conductive composite films, revealing the interfacial thermal conduction mechanism, proving that the amination optimized the interfaces between NH2-rGO and PI, reduced phonon scattering and ITR, and ultimately improved the interfacial thermal conduction. The in-plane λ (λ∥) and through-plane λ (λ⊥) of 15 wt% NH2-rGO/PI thermally conductive composite films at room temperature were, respectively, 7.13 W/mK and 0.74 W/mK, 8.2 times λ∥ (0.87 W/mK) and 3.5 times λ⊥ (0.21 W/mK) of pure PI film, also significantly higher than λ∥ (5.50 W/mK) and λ⊥ (0.62 W/mK) of 15 wt% rGO/PI thermally conductive composite films. Calculation based on the effective medium theory model proved that ITR was reduced via the amination of rGO. Infrared thermal imaging and finite element simulation showed that NH2-rGO/PI thermally conductive composite films obtained excellent heat dissipation and efficient thermal management capabilities on the light-emitting diodes bulbs, 5G high-power chips, and other electronic equipment, which are easy to generate heat severely.


RSC Advances ◽  
2016 ◽  
Vol 6 (47) ◽  
pp. 41630-41636 ◽  
Author(s):  
Fangfang Wang ◽  
Yimin Yao ◽  
Xiaoliang Zeng ◽  
Tao Huang ◽  
Rong Sun ◽  
...  

The interfacial thermal resistance among boron nitride nanosheets are reduced by sintering silver nanoparticles deposited on boron nitride nanosheets surfaces, beneficial for the forming networks.


Sign in / Sign up

Export Citation Format

Share Document