multifunctional nanocomposites
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 51)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 30 ◽  
pp. 103051
Author(s):  
Xiang Yan ◽  
Jie Yang ◽  
Juan Wu ◽  
Han Su ◽  
Guowen Sun ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
N. F. Santos ◽  
J. Rodrigues ◽  
S. O. Pereira ◽  
A. J. S. Fernandes ◽  
T. Monteiro ◽  
...  

AbstractThe inherent scalability, low production cost and mechanical flexibility of laser-induced graphene (LIG) combined with its high electrical conductivity, hierarchical porosity and large surface area are appealing characteristics for many applications. Still, other materials can be combined with LIG to provide added functionalities and enhanced performance. This work exploits the most adequate electrodeposition parameters to produce LIG/ZnO nanocomposites. Low-temperature pulsed electrodeposition allowed the conformal and controlled deposition of ZnO rods deep inside the LIG pores whilst maintaining its inherent porosity, which constitute fundamental advances regarding other methods for LIG/ZnO composite production. Compared to bare LIG, the composites more than doubled electrode capacitance up to 1.41 mF cm−2 in 1 M KCl, while maintaining long-term cycle stability, low ohmic losses and swift electron transfer. The composites also display a luminescence band peaked at the orange/red spectral region, with the main excitation maxima at ~ 3.33 eV matching the expected for the ZnO bandgap at room temperature. A pronounced sub-bandgap tail of states with an onset absorption near 3.07 eV indicates a high amount of defect states, namely surface-related defects. This work shows that these environmentally sustainable multifunctional nanocomposites are valid alternatives for supercapacitors, electrochemical/optical biosensors and photocatalytic/photoelectrochemical devices.


2021 ◽  
Author(s):  
Xiaoting Liu ◽  
Kai Pang ◽  
Yingjun Liu ◽  
Chao Gao ◽  
Zhen Xu

Abstract Constructing conductive filler networks with high efficiency is essential to fabricating functional polymer composites. Although two-dimensional (2D) sheets have prevailed in nanocomposites, their efficiency in enhancing conductive functions seems to reach the limit, as if merely addressing the dispersion homogeneity. Here, we exploit the unrecognized geometrical curvature of 2D sheets to break the efficiency limit of filler systems. The hyperbolic curvature meditates the incompatibility between 2D topology and 3D filler space and holds the efficient conductive path through face-to-face contact. The hyperbolic graphene framework exhibits the record efficiency in enhancing electrically and thermally conductive functions of nanocomposites. At volume loading of only 1.6%, the thermal and electrical conductivities reach 31.6 W/(mK) and 13,911 S/m, respectively. Nanocomposites with hyperbolic graphene framework exhibit great potentials in thermal management, sensing and electromagnetic shielding. Our work presents a geometrically optimal filler system to break the efficiency limit of multifunctional nanocomposites and broadens the structural design space of 2D sheets by curvature modulation to meet more applications.


2021 ◽  
Author(s):  
Nuno Santos ◽  
Joana Rodrigues ◽  
Sónia Pereira ◽  
António Fernandes ◽  
Teresa Monteiro ◽  
...  

Abstract The inherent scalability, low production cost and mechanical flexibility of laser-induced graphene (LIG) combined with its high electrical conductivity, hierarchichal porosity and large surface area are appealing characteristics for many applications. Still, other materials can be combined with LIG to provide added functionalities and enhanced performance. This work exploits the most adequate electrodeposition parameters to produce LIG/ZnO nanocomposites. Low-temperature pulsed electrodeposition allowed the conformal and controlled deposition of ZnO rods deep inside the LIG pores whilst maintaining its inherent porosity, which constitute fundamental advances regarding other methods for LIG/ZnO composite production. Compared to bare LIG, the composites more than doubled electrode capacitance up to 1.41 mF.cm-2 in 1 M KCl, whilst maintaining long-term cycle stability, low ohmic losses and swift electron transfer. The composites also display a luminescence band peaked at the orange/red spectral region, with main excitation maxima at ~3.33 eV matching the expected for the ZnO bandgap. A pronounced sub-bandgap tail of states with an onset absorption near 3.07 eV indicates a high amount of surface states. This work shows that these environmentally sustainable multifunctional nanocomposites are valid alternatives for supercapacitors, electrochemical/optical biosensors and photocatalytic/photoelectrochemical devices.


2021 ◽  
pp. 095400832110112
Author(s):  
Himanshu V Madhad ◽  
Nikita S Mishra ◽  
Sunil B Patel ◽  
Siddhi S Panchal ◽  
Rusvi A Gandhi ◽  
...  

Graphene and its derivatives have received considerable attention in industrial and academic research due to their unique, useful properties and applications. The use of graphene is still difficult due to its high cost of production. Hence, graphene nanoplatelets (GNPs) have been identified as a substitute for graphene, which are produced in large scale at a very low cost. Moreover, GNPs have played a significant role in various engineering thermoplastic materials [i.e., polyamides (PAs)] to enhance their properties and applications. The GNPs help in the production of low-cost multifunctional nanocomposites with notable useful properties such as high electrical conductivity, mechanical strength, and high aspect ratio. The GNPs based nanocomposites have a broad spectrum of application areas including 3D-printing, automotive materials, electrical appliances, low-cost composites films, and many more. This review summarizes different preparation techniques, properties, and applications of GNPs based PAs nanocomposites as reported in current literature.


Sign in / Sign up

Export Citation Format

Share Document