Fabrication of thermally conductive and electrically insulating polymer composites with isotropic thermal conductivity by constructing a three-dimensional interconnected network

Nanoscale ◽  
2019 ◽  
Vol 11 (23) ◽  
pp. 11360-11368 ◽  
Author(s):  
Hao Yuan ◽  
Yang Wang ◽  
Ting Li ◽  
Yijie Wang ◽  
Piming Ma ◽  
...  

Efficient heat removal via thermal management materials has become one of the most critical challenges in the development of modern microelectronic devices.

Author(s):  
Baojie Wei ◽  
xi cheng ◽  
Shuangqiao Yang

Ceramic-based polymer composites with high thermal conductivity and electrically insulation has been wildly used in modern electrical systems for thermal management application. Compared with ceramic materials, metals usually exhibit better...


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1312
Author(s):  
Yeon Ju Kwon ◽  
Jung Bin Park ◽  
Young-Pyo Jeon ◽  
Jin-Yong Hong ◽  
Ho Seok Park ◽  
...  

With the development of microelectronic devices having miniaturized and integrated electronic components, an efficient thermal management system with lightweight materials, which have outstanding thermal conductivity and processability, is becoming increasingly important. Recently, the use of polymer-based thermal management systems has attracted much interest due to the intrinsic excellent properties of the polymer, such as the high flexibility, low cost, electrical insulation, and excellent processability. However, most polymers possess low thermal conductivity, which limits the thermal management applications of them. To address the low thermal conduction of the polymer materials, many kinds of thermally conductive fillers have been studied, and the carbon-based polymer composite is regarded as one of the most promising materials for the thermal management of the electric and electronic devices. In addition, the next generation electronic devices require composite materials with various additional functions such as flexibility, low density, electrical insulation, and oriented heat conduction, as well as ultrahigh thermal conductivity. In this review, we introduce the latest papers on thermally conductive polymer composites based on carbon fillers with sophisticated structures to meet the above requirements. The topic of this review paper consists of the following four contents. First, we introduce the design of a continuous three-dimensional network structure of carbon fillers to reduce the thermal resistance between the filler–matrix interface and individual filler particles. Second, we discuss various methods of suppressing the electrical conductivity of carbon fillers in order to manufacture the polymer composites that meet both the electrical insulation and thermal conductivity. Third, we describe a strategy for the vertical alignment of carbon fillers to improve the through-plane thermal conductivity of the polymer composite. Finally, we briefly mention the durability of the thermal conductivity performance of the carbon-based composites. This review presents key technologies for a thermal management system of next-generation electronic devices.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1302
Author(s):  
Younggi Hong ◽  
Munju Goh

Epoxy resin (EP) is one of the most famous thermoset materials. In general, because EP has a three-dimensional random network, it possesses thermal properties similar to those of a typical heat insulator. Recently, there has been substantial interest in controlling the network structure of EP to create new functionalities. Indeed, the modified EP, represented as liquid crystalline epoxy (LCE), is considered promising for producing novel functionalities, which cannot be obtained from conventional EPs, by replacing the random network structure with an oriented one. In this paper, we review the current progress in the field of LCEs and their application to highly thermally conductive composite materials.


Nanoscale ◽  
2021 ◽  
Author(s):  
Shaoyang Xiong ◽  
Yue Qin ◽  
Linhong Li ◽  
Guoyong Yang ◽  
Maohua Li ◽  
...  

In order to meet the requirement of thermal performance with the rapid development of high-performance electronic devices, constructing a three-dimensional thermal transport skeleton is an effective method for enhancing thermal...


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 398 ◽  
Author(s):  
Yongcun Zhou ◽  
Xiao Zhuang ◽  
Feixiang Wu ◽  
Feng Liu

Polymer composites with high thermal conductivity have a great potential for applications in modern electronics due to their low cost, easy process, and stable physical and chemical properties. Nevertheless, most polymer composites commonly possess unsatisfactory thermal conductivity, primarily because of the high interfacial thermal resistance between inorganic fillers. Herein, we developed a novel method through silver functionalized graphene nanosheets (GNS) and multiwalled carbon nanotube (MWCNT) composites with excellent thermal properties to meet the requirements of thermal management. The effects of composites on interfacial structure and properties of the composites were identified, and the microstructures and properties of the composites were studied as a function of the volume fraction of fillers. An ultrahigh thermal conductivity of 12.3 W/mK for polymer matrix composites was obtained, which is an approximate enhancement of 69.1 times compared to the polyvinyl alcohol (PVA) matrix. Moreover, these composites showed more competitive thermal conductivities compared to untreated fillers/PVA composites applied to the desktop central processing unit, making these composites a high-performance alternative to be used for thermal management.


2021 ◽  
Vol 16 (2) ◽  
pp. 042-047
Author(s):  
Yanfei Bian ◽  
SHI Jian-zhou ◽  
XIE Ming-jun ◽  
CAI Meng

Annealed pyrolytic graphite (APG) is a material with thermal conductivity of about 1500 W/(m·K). This property may enable the usage of APG’s thermal potential to develop highly thermally conductive composites for devices requiring effective thermal management. In this paper, APG has been encapsulated in aluminum by brazing, and the thermal properties of Al-APG composite baseplates were measured. The results show that the thermal conductivity of the Al-APG composite baseplates is about 620 W/(m·K), which is four times higher than the pure aluminum plate (152 W/(m·K)).


RSC Advances ◽  
2016 ◽  
Vol 6 (27) ◽  
pp. 22364-22369 ◽  
Author(s):  
Zhiduo Liu ◽  
Dianyu Shen ◽  
Jinhong Yu ◽  
Wen Dai ◽  
Chaoyang Li ◽  
...  

Three dimensional graphene foam incorporated into epoxy matrix greatly enhance its thermal conductivity (up to 1.52 W mK−1) at low graphene foam loading (5.0 wt%), over an eight-fold enhancement in comparison with that of neat epoxy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai-Han Su ◽  
Cherng-Yuh Su ◽  
Cheng-Ta Cho ◽  
Chung-Hsuan Lin ◽  
Guan-Fu Jhou ◽  
...  

Abstract The issue of electronic heat dissipation has received much attention in recent times and has become one of the key factors in electronic components such as circuit boards. Therefore, designing of materials with good thermal conductivity is vital. In this work, a thermally conductive SBP/PU composite was prepared wherein the spherical h-BN@PMMA (SBP) composite powders were dispersed in the polyurethane (PU) matrix. The thermal conductivity of SBP was found to be significantly higher than that of the pure h-BN/PU composite at the same h-BN filler loading. The SBP/PU composite can reach a high thermal conductivity of 7.3 Wm−1 K−1 which is twice as high as that of pure h-BN/PU composite without surface treatment in the same condition. This enhancement in the property can be attributed to the uniform dispersion of SBP in the PU polymer matrix that leads to a three-dimensional continuous heat conduction thereby improving the heat diffusion of the entire composite. Hence, we provide a valuable method for preparing a 3-dimensional heat flow path in polyurethane composite, leading to a high thermal conductivity with a small amount of filler.


RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


Sign in / Sign up

Export Citation Format

Share Document