Effect of sintering temperatures on mixed phases and thermoelectric properties of nanostructured copper telluride

2020 ◽  
Vol 835 ◽  
pp. 155276
Author(s):  
R. Rajkumar ◽  
A.S. Alagar Nedunchezhian ◽  
D. Sidharth ◽  
P. Rajasekaran ◽  
M. Arivanandhan ◽  
...  
2019 ◽  
Author(s):  
Chanderbhan Chotia ◽  
Tarachand ◽  
Vikash Sharma ◽  
R. Venkatesh ◽  
Gunadhor S. Okram

2020 ◽  
Vol 49 (17) ◽  
pp. 5736-5737
Author(s):  
Aarón H. Barajas-Aguilar ◽  
A. M. Garay-Tapia ◽  
Sergio J. Jiménez-Sandoval

Copper telluride sensitivity to laser power: effect on the Raman spectra.


2008 ◽  
Author(s):  
David Johnson ◽  
Qiyin Lin ◽  
Mary Smeller ◽  
Colby Heideman ◽  
Arwyn L. E. Smalley

2000 ◽  
Vol 626 ◽  
Author(s):  
Harald Beyer ◽  
Joachim Nurnus ◽  
Harald Böttner ◽  
Armin Lambrecht ◽  
Lothar Schmitt ◽  
...  

ABSTRACTThermoelectric properties of low dimensional structures based on PbTe/PbSrTe-multiple quantum-well (MQW)-structures with regard to the structural dimensions, doping profiles and levels are presented. Interband transition energies and barrier band-gap are determined from IR-transmission spectra and compared with Kronig-Penney calculations. The influence of the data evaluation method to obtain the 2D power factor will be discussed. The thermoelectrical data of our layers show a more modest enhancement in the power factor σS2 compared with former publications and are in good agreement with calculated data from Broido et al. [5]. The maximum allowed doping level for modulation doped MQW structures is determined. Thermal conductivity measurements show that a ZT enhancement can be achieved by reducing the thermal conductivity due to interface scattering. Additionally promising lead chalcogenide based superlattices for an increased 3D figure of merit are presented.


2000 ◽  
Vol 626 ◽  
Author(s):  
Antje Mrotzek ◽  
Kyoung-Shin Choi ◽  
Duck-Young Chung ◽  
Melissa A. Lane ◽  
John R. Ireland ◽  
...  

ABSTRACTWe present the structure and thermoelectric properties of the new quaternary selenides K1+xM4–2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22. The compounds K1+xM4-2xBi7+xSe15 (M= Sn, Pb) crystallize isostructural to A1+xPb4-2xSb7+xSe15 with A = K, Rb, while K1-xSn5-xBi11+xSe22 reveals a new structure type. In both structure types fragments of the Bi2Te3-type and the NaCl-type are connected to a three-dimensional anionic framework with K+ ions filled tunnels. The two structures vary by the size of the NaCl-type rods and are closely related to β-K2Bi8Se13 and K2.5Bi8.5Se14. The thermoelectric properties of K1+xM4-2xBi7+xSe15 (M = Sn, Pb) and K1-xSn5-xBi11+xSe22 were explored on single crystal and ingot samples. These compounds are narrow gap semiconductors and show n-type behavior with moderate Seebeck coefficients. They have very low thermal conductivity due to an extensive disorder of the metal atoms and possible “rattling” K+ ions.


Sign in / Sign up

Export Citation Format

Share Document