Glass forming ability, magnetic properties and cryogenic magnetocaloric effects in RE60Co20Al20 (RE = Ho, Er, Tm) amorphous ribbons

2021 ◽  
pp. 162633
Author(s):  
Yikun Zhang ◽  
Jian Zhu ◽  
Shuo Li ◽  
Bin Zhang ◽  
Yaming Wang ◽  
...  
2001 ◽  
Vol 42 (10) ◽  
pp. 2136-2139 ◽  
Author(s):  
Baolong Shen ◽  
Hisato Koshiba ◽  
Akihisa Inoue ◽  
Hisamichi Kimura ◽  
Takao Mizushima

2010 ◽  
Vol 18 (10) ◽  
pp. 1876-1879 ◽  
Author(s):  
Qikui Man ◽  
Huaijun Sun ◽  
Yaqiang Dong ◽  
Baolong Shen ◽  
Hisamichi Kimura ◽  
...  

2006 ◽  
Vol 21 (4) ◽  
pp. 1019-1024 ◽  
Author(s):  
J.M. Park ◽  
J.S. Park ◽  
D.H. Kim ◽  
J-H. Kim ◽  
E. Fleury

Fe element was partially substituted by Zr and Co in an attempt to enhance the glass-forming ability, and mechanical and soft magnetic properties of Fe74-xNb6B17Y3(Zr, Co)x (x = 3, 5, 8) amorphous alloys. Both partial replacements resulted in the enhancement of the glass-forming ability, and 3-mm diameter rods with a fully amorphous structure were prepared by a copper mold casting method. Zr and Co containing Fe-based bulk amorphous alloys exhibited high compressive fracture strength of about 4 and 3.5 GPa, respectively. However, Zr and Co induced different effects on the magnetic properties. Whereas the partial replacement of Fe by Zr was found to decrease dramatically the saturation magnetization, the partial replacement of Fe by Co provided an increase of about 25% of the saturation magnetization.


Sign in / Sign up

Export Citation Format

Share Document