soft magnetic properties
Recently Published Documents


TOTAL DOCUMENTS

1063
(FIVE YEARS 125)

H-INDEX

42
(FIVE YEARS 9)

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Valentina Zhukova ◽  
Paula Corte-Leon ◽  
Juan Maria Blanco ◽  
Mihail Ipatov ◽  
Lorena Gonzalez-Legarreta ◽  
...  

Amorphous magnetic microwires can be suitable for a variety of technological applications due to their excellent magnetic softness and giant magnetoimpedance (GMI) effect. Several approaches for optimization of soft magnetic properties and GMI effect of magnetic microwires covered with an insulating, flexible, and biocompatible glass coating with tunable magnetic properties are overviewed. The high GMI effect and soft magnetic properties, achieved even in as-prepared Co-rich microwires with a vanishing magnetostriction coefficient, can be further improved by appropriate heat treatment (including stress-annealing and Joule heating). Although as-prepared Fe-rich amorphous microwires exhibit low GMI ratio and rectangular hysteresis loops, stress-annealing, Joule heating, and combined stress-annealed followed by conventional furnace annealing can substantially improve the GMI effect (by more than an order of magnitude).


2022 ◽  
Vol 8 ◽  
Author(s):  
Z. Li ◽  
K. F. Yao ◽  
T. C. Liu ◽  
X. Li ◽  
S. Wang

A series of nanocrystalline soft magnetic alloys with nominal compositions of Fe66.8-xCo10NixCu0.8Nb2.9Si11.5B8 (x = 1–15 at%) were developed and studied. Effects of annealing on the soft magnetic properties, crystallization behavior, and domain structure were investigated. The alloys with higher Ni content were prone to exhibit stronger magnetic anisotropy. The Fe66.8Co10Ni10Cu0.8Nb2.9Si11.5B8 alloy exhibited excellent soft magnetic properties, including the low permeability of 2000, low coercivity of about 0.6 A/m, and low remanence of 2.4 mT, together with a temperature gap of 128 K between two crystallization onset temperatures. It has been found that the Ni content and the annealing process possess significant effects on the soft magnetic property of the nanocrystalline alloys. It shows that the developed Fe66.8Co10Ni10Cu0.8Nb2.9Si11.5B8 nanocrystalline alloy exhibits great potentials for applying in the field of common mode chokes or current transformers, due to its ability to resist the direct current.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Stefan Wurster ◽  
Martin Stückler ◽  
Lukas Weissitsch ◽  
Heinz Krenn ◽  
Anton Hohenwarter ◽  
...  

The paper describes the capability of magnetic softening of a coarse-grained bulk material by a severe deformation technique. Connecting the microstructure with magnetic properties, the coercive field decreases dramatically for grains smaller than the magnetic exchange length. This makes the investigation of soft magnetic properties of severely drawn pearlitic wires very interesting. With the help of the starting two-phase microstructure, it is possible to substantially refine the material, which allows the investigation of magnetic properties for nanocrystalline bulk material. Compared to the coarse-grained initial, pearlitic state, the coercivities of the highly deformed wires decrease while the saturation magnetization values increase—even beyond the value expectable from the individual constituents. The lowest coercivity in the drawn state is found to be 520 A m−1 for a wire of 24-µm thickness and an annealing treatment has a further positive effect on it. The decreasing coercivity is discussed in the framework of two opposing models: grain refinement on the one hand and dissolution of cementite on the other hand. Auxiliary measurements give a clear indication for the latter model, delivering a sufficient description of the observed evolution of magnetic properties.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ma Qing ◽  
Teng Chong ◽  
Hu Jing ◽  
Baoan Sun

Fe-based amorphous alloy has excellent soft magnetic properties; traditionally, Fe-based amorphous alloy such as soft magnetic devices was fabricated by insulation enveloping and suppression molding methods. In this process, the aging of organic envelope materials and the crystallization of Fe-based amorphous alloy were usually occurring, accompanying with low magnetic induction and poor mechanical properties. The direct ink writing (DIW) technique can make complex-shaped parts and needs no heating treatment after forming, which can avoid the effect of traditional molding process. In the present study, varying mass fraction FeSiB/EP composite parts were prepared by the DIW technique with the Fe-based amorphous alloy powder and epoxy resin, in which microscopic morphology, magnetic properties, and mechanical properties of FeSiB/EP soft magnetic composites were studied. The results indicate that the slurry with iron powder mass fraction of 92.3, 92.6, and 92.8 wt% has good printing performance and self-support ability, which is suitable for DIW. The density of the printed parts is about 4.317, 4.449, and 4.537 g/cm3, which is almost similar with the iron powder. The tensile strength and elongation of printing parts are significantly improved compared with the pure epoxy resin. From the photos of microscopic morphology of printing parts, it can be seen that FeSiB powders are evenly dispersed in EP, no pores, and defects, with the proportion increasing of powders; the insulation coating thickness decreases; and the magnetic performance improves. The optimal sample is 92.8 wt% FeSiB/EP, in which saturation magnetic induction strength is 137.9759 emu/g and coercivity is 4.6523 A/m.


Sign in / Sign up

Export Citation Format

Share Document