VERUBECESTAT DISEASE PROGRESSION MODELING FROM APECS, A PHASE 3 TRIAL IN PRODROMAL ALZHEIMER’S DISEASE: NO DOSE- AND EXPOSURE-DEPENDENCY IN CLINICAL ENDPOINTS

2019 ◽  
Vol 15 (7) ◽  
pp. P249-P250
Author(s):  
Julie A. Stone ◽  
Huub Jan Kleijn ◽  
Ming Xu ◽  
James Kost ◽  
Christine Furtek ◽  
...  
2019 ◽  
Vol 15 ◽  
pp. P941-P941
Author(s):  
Julie A. Stone ◽  
Huub Jan Kleijn ◽  
David J. Jaworowicz ◽  
Julie Passarell ◽  
Marissa Dockendorf ◽  
...  

NeuroImage ◽  
2019 ◽  
Vol 190 ◽  
pp. 56-68 ◽  
Author(s):  
Marco Lorenzi ◽  
Maurizio Filippone ◽  
Giovanni B. Frisoni ◽  
Daniel C. Alexander ◽  
Sebastien Ourselin

2019 ◽  
Vol 15 (7) ◽  
pp. P249
Author(s):  
Cyrille Sur ◽  
Talakad G. Lohith ◽  
Theresa Taylor ◽  
Nicole Dupre ◽  
Christine Furtek ◽  
...  

2021 ◽  
Author(s):  
Khazar Ahmadi ◽  
Joana B. Pereira ◽  
David Berron ◽  
Jacob Vogel ◽  
Silvia Ingala ◽  
...  

Although several studies have shown decreased cerebral blood flow (CBF) in Alzheimer's disease (AD), the role of hypoperfusion in the disease pathogenesis remains unclear. Combining arterial spin labeling MRI, positron emission tomography, and biomarkers of cerebrospinal fluid, we investigated the associations between CBF and the key mechanisms in AD including amyloid-β (Aβ) and tau pathology, synaptic dysfunction and axonal degeneration. Further, we applied a disease progression modeling to characterize the temporal sequence of different AD biomarkers. Lower perfusion was observed in the temporo-occipito-parietal regions in the Aβ-positive cognitively impaired compared to both the Aβ-positive and Aβ-negative cognitively unimpaired individuals. In participants along the AD spectrum (those with Aβ pathology regardless of their cognitive status), CBF was inversely associated with tau and synaptic dysfunction, but not Aβ in similar cortical regions. Moreover, the disease progression modeling revealed that CBF disruption followed the abnormality of biomarkers of Aβ, tau and brain atrophy. These findings indicate that tau tangles and synaptic degeneration are more closely connected with CBF changes rather than Aβ pathology. This supports the notion that hypoperfusion is not an early event associated with the build-up of Aβ during the preclinical phase of AD.


Sign in / Sign up

Export Citation Format

Share Document