FDTD numerical simulation and application research of small-loop transient electromagnetic method in shallow water

2021 ◽  
pp. 104467
Author(s):  
Zhengyu Xu ◽  
Nengyi Fu ◽  
Longhuan Liu ◽  
Zhihong Fu
2021 ◽  
Author(s):  
Tingye Qi ◽  
Xiaoming Pei ◽  
Guorui Feng ◽  
Huiru Wei

Abstract Water inrush disasters poses a great threat to the safe exploitation of coal resources. To solve this problem, the transient electromagnetic method(TEM) was proposed to accurately detect the water accumulation in the goaf. The electromagnetic response characteristics of different water-filled goaves were studied by electromagnetic field theory, numerical simulation and field verification. Through the models of 100% water accumulation, 50% water accumulation, 0% water accumulation, 100% water accumulation with collapsed rock, 50% water accumulation with collapsed rock and 0% water accumulation with collapsed rock goaf, the characteristics of induced voltage attenuation curves were studied. Meanwhile, the relationship between the attenuation voltage value and area of the transmitting coil and the depth of the goaf were also simulated. The results illustrate that the attenuation curve of induced voltage presented a regular exponential decay form in the 0% water accumulation model but existed abnormal exaltation for voltage in water-filled model. Through the linear fitting curve, it can be seen that the abnormal intensity of the induced voltage becomes stronger as the distance between the measuring point and the center of the target decrement. Moreover, the abnormal amplitude of the induced voltage increases with the rise of the water accumulation and collapsed rock will weakly reduce the low-resistance anomalous effect on the water-accumulated goaf. In addition, the response value of the attenuation voltage increased in second-order as the area of the transmitting coil increases, but decreased in third-order as the depth of the target body increases. The field detection results of the Majiliang coal mine also confirmed the theoretical analysis and the numerical simulation. The conclusions had important guiding significance for accurate detection of coal mine goaf.


2017 ◽  
Vol 64 (8) ◽  
pp. 6475-6483 ◽  
Author(s):  
Cigong Yu ◽  
Zhihong Fu ◽  
Gaolin Wu ◽  
Liuyuan Zhou ◽  
Xuegui Zhu ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lei Zhang ◽  
Lin Xu ◽  
Yong Xiao ◽  
NingBo Zhang

A coal mine in Datong is an integrated mine. At present, there is goaf in the upper and lower part of the mining coal seam. There is a lot of ponding in the goaf, which has great potential safety hazards for production. In order to find out the scope and location of ponding in goaf, the comprehensive geophysical exploration method combining transient electromagnetic method and high-density resistivity method is used to carry out the research. Firstly, the time-base, turn-off time, receiving delay, current, superposition times, and other parameters of the instrument are tested on the surface of known goaf to obtain the best instrument parameters, and the parameters are used to verify the feasibility of the research scheme; then, the transient electromagnetic method is used for large-area exploration on the surface of the mine, the suspected goaf ponding area is found through comprehensive analysis, and the high-density resistivity exploration is arranged in the suspected goaf ponding area. According to the obtained results, the scope and location of the goaf ponding area are accurately located through comprehensive analysis. The results show that there are two goaf ponding areas in the exploration area, which are located above the 8# coal seam currently mined; the range and location of goaf ponding area can be accurately obtained by using the comprehensive geophysical method of high-density electrical method and transient electromagnetic method. This method can provide reference for mine water prevention and control in Datong area and has great practical significance to ensure coal mine safety production.


Sign in / Sign up

Export Citation Format

Share Document