scholarly journals Direct interaction of DNA repair protein tyrosyl DNA phosphodiesterase 1 and the DNA ligase III catalytic domain is regulated by phosphorylation of its flexible N-terminus

2021 ◽  
pp. 100921
Author(s):  
Ishtiaque Rashid ◽  
Michal Hammel ◽  
Aleksandr Sverzhinsky ◽  
Miaw-Sheue Tsai ◽  
John M. Pascal ◽  
...  
1998 ◽  
Vol 8 (15) ◽  
pp. 877-880 ◽  
Author(s):  
Richard M. Taylor ◽  
Bill Wickstead ◽  
Sam Cronin ◽  
Keith W. Caldecott

Biochemistry ◽  
2001 ◽  
Vol 40 (20) ◽  
pp. 5906-5913 ◽  
Author(s):  
Anna Dulic ◽  
Paul A. Bates ◽  
Xiaodong Zhang ◽  
Stephen R. Martin ◽  
Paul S. Freemont ◽  
...  

2004 ◽  
Vol 323 (1) ◽  
pp. 149-155 ◽  
Author(s):  
Shyamasri Biswas ◽  
Samiksha Katiyar ◽  
Guangtao Li ◽  
Xiaoke Zhou ◽  
William J. Lennarz ◽  
...  

2005 ◽  
Vol 37 (9) ◽  
pp. 958-963 ◽  
Author(s):  
Amom Ruhikanta Meetei ◽  
Annette L Medhurst ◽  
Chen Ling ◽  
Yutong Xue ◽  
Thiyam Ramsing Singh ◽  
...  

2016 ◽  
Vol 55 (8) ◽  
pp. 2911-2915 ◽  
Author(s):  
Chao Wang ◽  
Daniel Abegg ◽  
Dominic G. Hoch ◽  
Alexander Adibekian

1994 ◽  
Vol 14 (1) ◽  
pp. 68-76 ◽  
Author(s):  
K W Caldecott ◽  
C K McKeown ◽  
J D Tucker ◽  
S Ljungquist ◽  
L H Thompson

XRCC1, the human gene that fully corrects the Chinese hamster ovary DNA repair mutant EM9, encodes a protein involved in the rejoining of DNA single-strand breaks that arise following treatment with alkylating agents or ionizing radiation. In this study, a cDNA minigene encoding oligohistidine-tagged XRCC1 was constructed to facilitate affinity purification of the recombinant protein. This construct, designated pcD2EHX, fully corrected the EM9 phenotype of high sister chromatid exchange, indicating that the histidine tag was not detrimental to XRCC1 activity. Affinity chromatography of extract from EM9 cells transfected with pcD2EHX resulted in the copurification of histidine-tagged XRCC1 and DNA ligase III activity. Neither XRCC1 or DNA ligase III activity was purified during affinity chromatography of extract from EM9 cells transfected with pcD2EX, a cDNA minigene that encodes untagged XRCC1, or extract from wild-type AA8 or untransfected EM9 cells. The copurification of DNA ligase III activity with histidine-tagged XRCC1 suggests that the two proteins are present in the cell as a complex. Furthermore, DNA ligase III activity was present at lower levels in EM9 cells than in AA8 cells and was returned to normal levels in EM9 cells transfected with pcD2EHX or pcD2EX. These findings indicate that XRCC1 is required for normal levels of DNA ligase III activity, and they implicate a major role for this DNA ligase in DNA base excision repair in mammalian cells.


1995 ◽  
Vol 337 (1) ◽  
pp. 25-39 ◽  
Author(s):  
A.J. van Vuuren ◽  
E. Appeldoorn ◽  
H. Odijk ◽  
S. Humbert ◽  
V. Moncollin ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dhia Azzouz ◽  
Meraj A. Khan ◽  
Nades Palaniyar

AbstractReactive oxygen species (ROS) are essential for neutrophil extracellular trap (NET) formation or NETosis. Nevertheless, how ROS induces NETosis is unknown. Neutrophil activation induces excess ROS production and a meaningless genome-wide transcription to facilitate chromatin decondensation. Here we show that the induction of NADPH oxidase-dependent NETosis leads to extensive DNA damage, and the subsequent translocation of proliferating cell nuclear antigen (PCNA), a key DNA repair protein, stored in the cytoplasm into the nucleus. During the activation of NETosis (e.g., by phorbol myristate acetate, Escherichia coli LPS, Staphylococcus aureus (RN4220), or Pseudomonas aeruginosa), preventing the DNA-repair-complex assembly leading to nick formation that decondenses chromatin causes the suppression of NETosis (e.g., by inhibitors to, or knockdown of, Apurinic endonuclease APE1, poly ADP ribose polymerase PARP, and DNA ligase). The remaining repair steps involving polymerase activity and PCNA interactions with DNA polymerases β/δ do not suppress agonist-induced NETosis. Therefore, excess ROS produced during neutrophil activation induces NETosis by inducing extensive DNA damage (e.g., oxidising guanine to 8-oxoguanine), and the subsequent DNA repair pathway, leading to chromatin decondensation.


Sign in / Sign up

Export Citation Format

Share Document