Diagnostic Biomarker
Recently Published Documents





2021 ◽  
Vol 14 ◽  
Le Zhang ◽  
Hao Feng ◽  
Yanwu Jin ◽  
Yufeng Zhan ◽  
Qi Han ◽  

Neuropathic pain (NP) is caused by primary injury or dysfunction of the peripheral and the central nervous system. Long non-coding RNAs were critical regulators involved in nervous system diseases, however, the precise regulatory mechanism remains unclear. This study aims to uncover the essential role of LINC01119 in NP progression and further clarify the underlying regulatory mechanism at post-transcriptional level. LINC01119 was significantly upregulated in rats of spare nerve injury (SNI) group compared to sham group. Functionally, silencing of LINC01119 significantly alleviated the neuropathic pain-induced hypersensitivity and reduced the increase in IL−6, IL−1β, and TNF−α caused by SNI. Mechanistically, Brain-derived neurotrophic factor (BDNF) was identified as the functional target of LINC01119. Besides, an RNA binding protein, ELAVL1 could directly interact with LINC01119, and this formed LINC01119- ELAVL1 complex binds to BDNF mRNA, strengthening its RNA stability and increasing the expression level of BDNF at both transcript and protein levels. Clinically, serum LINC01119 was verified as a promising diagnostic biomarker for NP patients. LINC01119 induces NP progression via binding with ELAVL1 and increasing BDNF mRNA stability and expression level. Therefore, LINC01119 may serve as a promising diagnostic marker and therapeutic target for NP treatment.

2021 ◽  
Vol 8 ◽  
Hui Zhang ◽  
Guyue Hu ◽  
Doukun Lu ◽  
Gang Zhao ◽  
Yiqiu Zhang ◽  

Mycoplasmas are successful pathogens both in humans as well as in animals. In cattle, Mycoplasma bovis (M. bovis) is known to be responsible for serious health complications, including pneumonia, mastitis, and arthritis. However, M. bovis pathogenesis remains unclear. Secreted proteins of M. bovis could influence infection and modify host defense signaling pathways after they enter their extracellular space in the host micro-environment. Therefore, this study was aimed to compare the secretomes of M. bovis HB0801 virulent (P1) and attenuated (P150) strains and identify potential pathogenesis-related secreted proteins and biomarkers. The cells of P1 and P150 strains were grown in pleuropneumonia-like organism medium to log phase and then transferred to phosphate-buffered saline for 2 h. Then, the supernatant was analyzed by using label-free quantitative proteomics, and 477 potential secreted proteins were identified. Combined with the bioinformatics prediction, we found that 178 proteins were commonly secreted by the P1 and P150 strains, and 49 of them were encoded by mycoplasmal core genes. Additionally, 79 proteins were found to have a different abundance between the P1 and P150 strains. Among these proteins, 34 were more abundant and uniquely expressed in P1, indicating a possible association with the virulence of M. bovis. Three differentially secreted proteins, MbovP0145, MbovP0725, and MbovP0174, as well as one equally secreted protein, MbovP0481, as positive control and one protein of inner membrane, MbovP0310, as negative control were, respectively, cloned, expressed, and evaluated for antigenicity, subcellular location, and the secretion nature with their mouse antisera by western blotting and colony immunoblotting assay. Among them, MbovP0145 was confirmed to be more secreted by P1 than P150 strain, highly reactive with the antisera from naturally infected and P1 experimentally infected cattle but not with the P150 vaccinated calves, indicating its potential as a diagnostic antigen. In conclusion, these findings may represent the most extensive compilation of potentially secreted proteins in mycoplasma species and the largest number of differentially secreted proteins between the virulent and attenuated M. bovis strains to date and provide new insights into M. bovis pathogenesis and diagnosis.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Melika Ameli-Mojarad ◽  
Mandana Ameli-Mojarad ◽  
Mitra Nourbakhsh ◽  
Ehsan Nazemalhosseini-Mojarad

Breast cancer (BC) is one of the most common lethal diseases in women worldwide. Recent evidence has shown that covalently closed Circular RNA (circRNA) deregulation is observed in different human malignancies and cancers. Lately, circRNAs are being considered as a new diagnostic biomarker; however, the mechanism and the correlation of action between circRNAs and BC are still unclear. In the present study, we try to investigate the expression level of hsa_circ_0005046 and hsa_circ_0001791 in BC. By using quantitative real-time polymerase chain reaction (qRT-PCR), expression profiles of candidate circRNAs were detected in 60 BC tissue and paired adjacent normal tissues. Furthermore, the clinicopathological relation and diagnostic value were estimated. Our results showed the higher expression levels of hsa_circ_0005046 and hsa_circ_0001791 in BC tissues compared to paired adjacent normal tissues with P value ( P < 0.0001 ) for both circRNAs, and the area under the receiver operating characteristic (ROC) curve was 0.857 and 1.0, respectively; in addition, a total 10 miRNAs that can be targeted by each candidate circRNAs was predicted base on bioinformatics databases. Taken together, for the first time, the results of our study presented high expression levels of hsa_circ_0005046 and hsa_circ_00017916 in BC; although there was no direct correlation between the high expression level of both circRNAs with clinic pathological factors, except hsa_circ_0001791 association with estrogen receptors (ER), high ROC curve in expressed samples indicated that both circRNAs could be used as a new diagnostic biomarker for BC. Moreover, miRNAs selection tools predicted that miR-215 and mir-383-5p which have a tumor suppressor role in BC can be targeted by our candidate circRNAs to affect the PI3K/AKT pathway; in conclusion, further studies are required to validate the oncogene role of our candidate circRNAs through the PI3k pathway.

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 913
Ting Li ◽  
Yan Wei ◽  
Meihua Qu ◽  
Lixian Mou ◽  
Junye Miao ◽  

Formaldehyde (FA) is a highly reactive substance that is ubiquitous in the environment and is usually considered as a pollutant. In the human body, FA is a product of various metabolic pathways and participates in one-carbon cycle, which provides carbon for the synthesis and modification of bio-compounds, such as DNA, RNA, and amino acids. Endogenous FA plays a role in epigenetic regulation, especially in the methylation and demethylation of DNA, histones, and RNA. Recently, epigenetic alterations associated with FA dysmetabolism have been considered as one of the important features in age-related cognitive impairment (ARCI), suggesting the potential of using FA as a diagnostic biomarker of ARCI. Notably, FA plays multifaceted roles, and, at certain concentrations, it promotes cell proliferation, enhances memory formation, and elongates life span, effects that could also be involved in the aetiology of ARCI. Further investigation of and the regulation of the epigenetics landscape may provide new insights about the aetiology of ARCI and provide novel therapeutic targets.

2021 ◽  
Vol 27 ◽  
Bo Liu ◽  
Hui-Yang Jiang ◽  
Tao Yuan ◽  
Wei-Dong Zhou ◽  
Zhen-Dong Xiang ◽  

Background: Prostate cancer (PCa) is a commonly diagnosed malignant cancer and is the second highest cause of cancer related death in men worldwide. Enzalutamide is the second-generation inhibitor of androgen receptor signaling and is the fundamental drug for the treatment of advanced PCa. However, the disease will eventually progress to metastatic castration-resistant prostate cancer (CRPC) and aggressive neuroendocrine prostate cancer (NEPC) because of androgen-deprivation therapy (ADT) resistance. The aim of the study was to investigate the role of long non-coding RNA (lncRNA) AFAP1-AS1 in ADT resistance. Objective: Quantitative real-time PCR analysis (qPCR) was used to assess the expression of AFAP1-AS1 in PCa cell lines and tissues. Cell proliferation and invasion were assessed after AFAP1-AS1 knockdown using Cell Counting Kit (CCK)-8 and Transwell assay, respectively. A dual-luciferase reporter gene assay was carried out to validate the regulatory relationship among AFAP1-AS1, microRNA (miR)-15b, and insulin-like growth factor1 receptor (IGF1R). Results: AFAP1-AS1 level was markedly increased in castration-resistant C4-2 cells and NE-like cells (PC3, DU145, and NCI-H660), compared with androgen-sensitive LNCaP cells. Enzalutamide treatment increased the expression of AFAP1-AS1 in vitro and in vivo. Functionally, AFAP1-AS1 knockdown repressed tumor cell proliferation and invasion. Mechanistically, AFAP1-AS1 functioned as an oncogene in PCa through binding to miR-15b and destroying its tumor suppressor function. Finally, we identified that AFAP1-AS1 up-regulated IGF1R expression by competitively binding to miR-15b to de-repress IGF1R. Conclusion: AFAP1-AS1 facilitates PCa progression by regulating miR-15b/IGF1R axis, indicating that AFAP1-AS1 may serve as a diagnostic biomarker and therapeutic target for PCa.

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1079
Yuyang Zeng ◽  
Xiujuan Yin ◽  
Changzheng Chen ◽  
Yiqiao Xing

Age-related macular degeneration (AMD) is a progressive neurodegenerative disease of the central retina, with no suitable biomarkers for early diagnosis and treatment. This study aimed to find potential diagnostic biomarker candidates for AMD and investigate their immune-related roles in this pathology. Weight gene correlation analysis was first performed based on data from the Gene Expression Omnibus database and 20 hub genes were identified. The functional enrichment analyses showed that the innate immune response, inflammatory response, and complement activation were key pathways associated with AMD. Complement C1s (C1S), adrenomedullin (ADM), and immediate early response 5 like (IER5L) were identified as the crucial genes with favorable diagnostic values for AMD by using LASSO analysis and multiple logistic regression. Furthermore, a 3-gene model was constructed and proved to be of good diagnostic and predictive performance for AMD (AUC = 0.785, 0.840, and 0.810 in training, test, and validation set, respectively). Finally, CIBERSORT was used to evaluate the infiltration of immune cells in AMD tissues. The results showed that the NK cells, CD4 memory T cell activation, and macrophage polarization may be involved in the AMD process. C1S, ADM, and IER5L were correlated with the infiltration of the above immune cells. In conclusion, our study suggests that C1S, ADM, and IER5L are promising diagnostic biomarker candidates for AMD and may regulate the infiltration of immune cells in the occurrence and progression of AMD.

2021 ◽  
Vol 43 (1) ◽  
pp. 324-334
Francisco J. Julián-Villaverde ◽  
Laura Ochoa-Callejero ◽  
Eva Siles ◽  
Esther Martínez-Lara ◽  
Alfredo Martínez

Hemorrhagic stroke remains an important health challenge. Adrenomedullin (AM) is a vasoactive peptide with an important role in cardiovascular diseases, including stroke. Serum AM and nitrate–nitrite and S-nitroso compounds (NOx) levels were measured and compared between healthy volunteers (n = 50) and acute hemorrhagic stroke patients (n = 64). Blood samples were taken at admission (d0), 24 h later (d1), and after 7 days or at the time of hospital discharge (d7). Neurological severity (NIHSS) and functional prognosis (mRankin) were measured as clinical outcomes. AM levels were higher in stroke patients at all times when compared with healthy controls (p < 0.0001). A receiving operating characteristic curve analysis identified that AM levels at admission > 69.0 pg/mL had a great value as a diagnostic biomarker (area under the curve = 0.89, sensitivity = 80.0%, specificity = 100%). Furthermore, patients with a favorable outcome (NIHSS ≤ 3; mRankin ≤ 2) experienced an increase in AM levels from d0 to d1, and a decrease from d1 to d7, whereas patients with unfavorable outcome had no significant changes over time. NOx levels were lower in patients at d0 (p = 0.04) and d1 (p < 0.001) than in healthy controls. In conclusion, AM levels may constitute a new diagnostic and prognostic biomarker for this disease, and identify AM as a positive mediator for hemorrhagic stroke resolution.

Jie Shi ◽  
Xin Lv ◽  
Lizhong Zeng ◽  
Wei Li ◽  
Yujie Zhong ◽  

Abstract Background Circular RNAs (circRNAs) are a new type of extensive non-coding RNAs that regulate the activation and progression of different human diseases, including cancer. However, information on the underlying mechanisms and clinical significance of circRNAs in lung squamous cell carcinoma (LUSC) remains scant. Methods The expression profile of RNAs in 8 LUSC tissues, and 9 healthy lung tissues were assayed using RNA sequencing (RNA-seq) techniques. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to profile the expression of circPVT1 and its relationship with the prognosis of LUSC, i.e., survival analysis. Moreover, in vitro and in vivo experiments were performed to evaluate the impacts of circPVT1 on the growth of tumors. RNA pull-down tests, mass spectrometry, dual-luciferase reporter assessment, and RNA immune-precipitation tests were further conducted to interrogate the cross-talk between circPVT1, HuR, or miR-30d/e in LUSC. Results Our data showed that circPVT1 was upregulated in LUSC tissues, serum, and cell lines. LUSC patients with higher circPVT1 expression exhibited shorter survival rates. The in vivo and in vitro data revealed that circPVT1 promotes the proliferation of LUSC cells. Additionally, mechanistic analysis showed that HuR regulated circPVT1. On the other hand, circPVT1 acted as a competing endogenous RNA (ceRNA) of miR-30d and miR-30e in alleviating the suppressive influences of miR-30d and miR-30e on its target cyclin F (CCNF). Conclusion CircPVT1 promotes LUSC progression via HuR/circPVT1/miR-30d and miR-30e/CCNF cascade. Also, it acts as a novel diagnostic biomarker or treatment target of individuals diagnosed with LUSC.

2021 ◽  
pp. jnnp-2019-321663
H Stephan Goedee ◽  
Shahram Attarian ◽  
Thierry Kuntzer ◽  
Peter Van den Bergh ◽  
Yusuf A Rajabally

Acute and chronic immune-mediated neuropathies have been widely reported with medical intervention. Although causal relationship may be uncertain in many cases, a variety of drugs, several vaccination types, surgical procedures and bone marrow transplants have been reported as possible cause or trigger of a putative immune-mediated response resulting in acute and chronic neuropathies. We conducted a systematic review of the literature from 1966 to 2020 on reported cases of possible iatrogenic immune-mediated neuropathies. We determined in each case the likelihood of causality based on frequency of the association, focusing primarily on clinical presentation and disease course as well as available ancillary investigations (electrophysiology, blood and cerebrospinal fluid and neuropathology). The response to immunotherapy and issue of re-exposure were also evaluated. We also considered hypothesised mechanisms of onset of immune-mediated neuropathy in the specific iatrogenic context. We believe that a likely causal relationship exists for only few drugs, mainly antitumour necrosis factor alpha agents and immune checkpoint inhibitors, but remains largely unsubstantiated for most other suggested iatrogenic causes. Unfortunately, given the lack of an accurate diagnostic biomarker for most immune-mediated neuropathies, clinical assessment will often override ancillary investigations, resulting in lower levels of certainty that may continue to cast serious doubts on reliability of their diagnosis. Consequently, future reports of suspected cases should collect and exhaustively assess all relevant data. At the current time, besides lack of evidence for causality, the practical implications on management of suspected cases is extremely limited and therapeutic decisions appear likely no different to those made in non-iatrogenic cases.

Export Citation Format

Share Document