scholarly journals Semantic relation extraction aware of N-gram features from unstructured biomedical text

2018 ◽  
Vol 86 ◽  
pp. 59-70 ◽  
Author(s):  
Zheng Wang ◽  
Shuo Xu ◽  
Lijun Zhu
PLoS ONE ◽  
2011 ◽  
Vol 6 (8) ◽  
pp. e23862 ◽  
Author(s):  
Yue Shang ◽  
Yanpeng Li ◽  
Hongfei Lin ◽  
Zhihao Yang

Database ◽  
2021 ◽  
Vol 2021 ◽  
Author(s):  
Yifan Shao ◽  
Haoru Li ◽  
Jinghang Gu ◽  
Longhua Qian ◽  
Guodong Zhou

Abstract Extraction of causal relations between biomedical entities in the form of Biological Expression Language (BEL) poses a new challenge to the community of biomedical text mining due to the complexity of BEL statements. We propose a simplified form of BEL statements [Simplified Biological Expression Language (SBEL)] to facilitate BEL extraction and employ BERT (Bidirectional Encoder Representation from Transformers) to improve the performance of causal relation extraction (RE). On the one hand, BEL statement extraction is transformed into the extraction of an intermediate form—SBEL statement, which is then further decomposed into two subtasks: entity RE and entity function detection. On the other hand, we use a powerful pretrained BERT model to both extract entity relations and detect entity functions, aiming to improve the performance of two subtasks. Entity relations and functions are then combined into SBEL statements and finally merged into BEL statements. Experimental results on the BioCreative-V Track 4 corpus demonstrate that our method achieves the state-of-the-art performance in BEL statement extraction with F1 scores of 54.8% in Stage 2 evaluation and of 30.1% in Stage 1 evaluation, respectively. Database URL: https://github.com/grapeff/SBEL_datasets


Author(s):  
Wei Shen ◽  
Jianyong Wang ◽  
Ping Luo ◽  
Min Wang

Relation extraction from the Web data has attracted a lot of attention recently. However, little work has been done when it comes to the enterprise data regardless of the urgent needs to such work in real applications (e.g., E-discovery). One distinct characteristic of the enterprise data (in comparison with the Web data) is its low redundancy. Previous work on relation extraction from the Web data largely relies on the data's high redundancy level and thus cannot be applied to the enterprise data effectively. This chapter reviews related work on relation extraction and introduces an unsupervised hybrid framework REACTOR for semantic relation extraction over enterprise data. REACTOR combines a statistical method, classification, and clustering to identify various types of relations among entities appearing in the enterprise data automatically. REACTOR was evaluated over a real-world enterprise data set from HP that contains over three million pages and the experimental results show its effectiveness.


Sign in / Sign up

Export Citation Format

Share Document