An articular cartilage contact model based on real surface geometry

2005 ◽  
Vol 38 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Sang-Kuy Han ◽  
Salvatore Federico ◽  
Marcelo Epstein ◽  
Walter Herzog
2013 ◽  
Vol 50 (3) ◽  
pp. 331-347 ◽  
Author(s):  
Can K. Bora ◽  
Michael E. Plesha ◽  
Robert W. Carpick

2022 ◽  
Vol 320 ◽  
pp. 126322
Author(s):  
Can Jin ◽  
Yuanjie Feng ◽  
Xu Yang ◽  
Pengfei Liu ◽  
Zhongjun Ding ◽  
...  

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Philip Varney ◽  
Itzhak Green

Rotating machines and associated triboelements are ubiquitous in industrial society, playing a central role in power generation, transportation, and manufacturing. Unfortunately, these systems are susceptible to undesirable contact (i.e., rub) between the rotor and stator, which is both costly and dangerous. These adverse effects can be alleviated by properly applying accurate real-time diagnostics. The first step toward accurate diagnostics is developing rotor–stator rub models which appropriately emulate reality. Previous rotor–stator rub models disavow the contact physics by reducing the problem to a single esoteric linear contact stiffness occurring only at the point of maximum rotor radial deflection. Further, the contact stiffness is typically chosen arbitrarily, and as such provides no additional insight into the contacting surfaces. Here, a novel rotor–stator rub model is developed by treating the strongly conformal curved surfaces according to their actual nature: a collection of stochastically distributed asperities. Such an approach is advantageous in that it relies on real surface measurements to quantify the contact force rather than a heuristic choice of linear contact stiffness. Specifically, the elastoplastic Jackson–Green (JG) rough surface contact model is used to obtain the quasistatic contact force versus rotor radial deflection; differences and similarities in contact force between the linear elastic contact model (LECM) and JG model are discussed. Furthermore, the linear elastic model's point contact assumption is assessed and found to be inaccurate for systems with small clearances. Finally, to aid in computational efficiency in future rotordynamic simulation, a simple exponential curve fit is proposed to approximate the JG force–displacement relationship.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 638 ◽  
Author(s):  
Cyrus Amini ◽  
Ramón Jerez-Mesa ◽  
J. Antonio Travieso-Rodriguez ◽  
Jordi Llumà ◽  
Aida Estevez-Urra

Ball burnishing is a superfinishing operation whose objective is the enhancement of surface integrity of previously machined surfaces, hence its appropriateness to complement chip removal processes at the end of a production line. As a complex process involving plastic deformation, friction and three-dimensional interaction between solids, numerical solutions and finite element models have typically included a considerable amount of simplifications that represent the process partially. The aim of this paper is to develop a 3D numerical finite element model of the ball burnishing process including in the target workpiece real surface integrity descriptors resulting from a ball-end milled AISI 1038 surface. Specifically, its periodical topological features are used to generate the surface geometry and the residual stress tensor measured on a real workpiece is embedded in the target surface. Secondly, different models varying the effect of the coefficient of friction and the direction of application of burnishing passes with regards to the original milling direction are calculated. Results show that the resulting topology and residual stresses are independent of the burnishing direction. However, it is evident that the model outputs are highly influenced by the value of the coefficient of friction. A value of 0.15 should be implemented in order to obtain representative results through finite element models.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Ibrahim Demirci ◽  
Sabeur Mezghani ◽  
Mohammed Yousfi ◽  
Mohamed El Mansori

Determining friction is as equally essential as determining the film thickness in the lubricated contact, and is an important research subject. Indeed, reduction of friction in the automotive industry is important for both the minimization of fuel consumption as well as the decrease in the emissions of greenhouse gases. However, the progress in friction reduction has been limited by the difficulty in understanding the mechanism of roughness effects on friction. It was observed that micro-surface geometry or roughness was one of the major factors that affected the friction coefficient. In the present study, a new methodology coupling the multiscale decomposition of the surface and the prediction of the friction coefficient by numerical simulation was developed to understand the influence of the scale of roughness in the friction coefficient. In particular, the real surface decomposed in different roughness scale by multiscale decomposition, based on ridgelets transform, was used as input into the model. This model predicts the effect of scale on mixed elastohydroynamic point contact. The results indicate a good influence of the fine scale of surface roughness on the friction coefficient for full-film lubrication as well as a beginning of improvement for mixed lubrication.


2008 ◽  
Vol 198 (2) ◽  
pp. 916-924 ◽  
Author(s):  
Zhou Wei ◽  
Zhou Changbin ◽  
Chang Xiaolin

Sign in / Sign up

Export Citation Format

Share Document