scholarly journals Phospholipase D1-generated phosphatidic acid modulates secretory granule trafficking from biogenesis to compensatory endocytosis in neuroendocrine cells

2021 ◽  
pp. 100844
Author(s):  
Emeline Tanguy ◽  
Alexander Wolf ◽  
Qili Wang ◽  
Sylvette Chasserot-Golaz ◽  
Stéphane Ory ◽  
...  
1994 ◽  
Vol 298 (3) ◽  
pp. 521-528 ◽  
Author(s):  
S D Arden ◽  
N G Rutherford ◽  
P C Guest ◽  
W J Curry ◽  
E M Bailyes ◽  
...  

The post-translational processing of chromogranin A (CGA) and the nature of the enzyme(s) involved were investigated in rat pancreatic islet and insulinoma tissue. Pulse-chase radiolabelling experiments using sequence-specific antisera showed that the 98 kDa (determined by SDS/PAGE) precursor was processed to an N-terminal 21 kDa peptide, a C-terminal 14 kDa peptide and a 45 kDa centrally located peptide with a rapid time course (t1/2 approx. 30 min) after an initial delay of 30-60 min. The 45 kDa peptide was, in turn, converted partially into a 5 kDa peptide with pancreastatin immunoreactivity and a 3 kDa peptide with WE-14 immunoreactivity over a longer time period. Incubation of bovine CGA with rat insulinoma secretory-granule lysate produced peptides of 18, 16 and 40 kDa via intermediates of 65 and 55 kDa. N-terminal sequence analysis indicated that cleavage occurred at the conserved paired basic sites Lys114-Arg115 and Lys330-Arg331, suggesting that cleavage of the equivalent sites (Lys129-Arg130 and Lys357-Arg358) in the rat molecule produced the initial post-translational products observed in intact pancreatic beta-cells. The enzyme activity responsible for the cleavage of bovine CGA co-chromatographed on DEAE-cellulose with the type-2 proinsulin endopeptidase and with PC2 immunoreactivity. The type-1 enzyme (PC1/3) appeared inactive towards CGA. The requirement for Ca2+ ions and an acidic pH for conversion was consistent with the involvement of a member of the eukaryote subtilisin family, and the composition of the released peptides in pulse-chase and secretion studies suggested that conversion occurred in the secretory-granule compartment. The overall catalytic rate as well as the relative susceptibilities of the Lys114-Arg115 and Lys330-Arg331 sites to cleavage were affected by pH, suggesting that the ionic environment of the processing compartment may play a role in the differential processing of CGA which is evident in various neuroendocrine cells.


ChemInform ◽  
2003 ◽  
Vol 34 (28) ◽  
Author(s):  
N. T. Ktistakis ◽  
C. Delon ◽  
M. Manifava ◽  
E. Wood ◽  
I. Ganley ◽  
...  

2020 ◽  
Vol 34 (5) ◽  
pp. 6769-6790 ◽  
Author(s):  
Ophélie Carmon ◽  
Fanny Laguerre ◽  
Lina Riachy ◽  
Charlène Delestre‐Delacour ◽  
Qili Wang ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4122-4128 ◽  
Author(s):  
Tomohiro Hitomi ◽  
Juan Zhang ◽  
Liliana M. Nicoletti ◽  
Ana Cristina G. Grodzki ◽  
Maria C. Jamur ◽  
...  

Abstract To investigate the role of phospholipase D (PLD) in FcϵRI signaling, the wild-type or the catalytically inactive forms of PLD1 or PLD2 were stably overexpressed in RBL-2H3 mast cells. FcϵRI stimulation resulted in the activation of both PLD1 and PLD2. However, PLD1 was the source of most of the receptor-induced PLD activity. There was enhanced FcϵRI-induced degranulation only in cells that overexpressed the catalytically inactive PLD1. This dominant-negative PLD1 enhanced FcϵRI-induced tyrosine phosphorylations of early signaling molecules such as the receptor subunits, Syk and phospholipase C-γ which resulted in faster release of Ca2+ from intracellular sources. Therefore, PLD1 negatively regulates signals upstream of the Ca2+ response. However, FcϵRI-induced PLD activation required Syk and was downstream of the Ca2+response, suggesting that basal PLD1 activity rather than that activated by cell stimulation controlled these early signaling events. Dominant-negative PLD1 reduced the basal phosphatidic acid formation in unstimulated cells, which was accompanied by an increase in FcϵRI within the lipid rafts. These results indicate that constitutive basal PLD1 activity by regulating phosphatidic acid formation controls the early signals initiated by FcϵRI aggregation that lead to mast cell degranulation. (Blood. 2004;104:4122-4128)


Cell Reports ◽  
2020 ◽  
Vol 32 (7) ◽  
pp. 108026 ◽  
Author(s):  
Emeline Tanguy ◽  
Pierre Costé de Bagneaux ◽  
Nawal Kassas ◽  
Mohamed-Raafet Ammar ◽  
Qili Wang ◽  
...  

2008 ◽  
Vol 19 (2) ◽  
pp. 485-497 ◽  
Author(s):  
Alice D. Lam ◽  
Petra Tryoen-Toth ◽  
Bill Tsai ◽  
Nicolas Vitale ◽  
Edward L. Stuenkel

Membrane fusion is a process that intimately involves both proteins and lipids. Although the SNARE proteins, which ultimately overcome the energy barrier for fusion, have been extensively studied, regulation of the energy barrier itself, determined by specific membrane lipids, has been largely overlooked. Our findings reveal a novel function for SNARE proteins in reducing the energy barrier for fusion, by directly binding and sequestering fusogenic lipids to sites of fusion. We demonstrate a specific interaction between Syntaxin1A and the fusogenic lipid phosphatidic acid, in addition to multiple polyphosphoinositide lipids, and define a polybasic juxtamembrane region within Syntaxin1A as its lipid-binding domain. In PC-12 cells, Syntaxin1A mutations that progressively reduced lipid binding resulted in a progressive reduction in evoked secretion. Moreover, amperometric analysis of fusion events driven by a lipid-binding–deficient Syntaxin1A mutant (5RK/A) demonstrated alterations in fusion pore dynamics, suggestive of an energetic defect in secretion. Overexpression of the phosphatidic acid–generating enzyme, phospholipase D1, completely rescued the secretory defect seen with the 5RK/A mutant. Moreover, knockdown of phospholipase D1 activity drastically reduced control secretion, while leaving 5RK/A-mediated secretion relatively unaffected. Altogether, these data suggest that Syntaxin1A–lipid interactions are a critical determinant of the energetics of SNARE-catalyzed fusion events.


2001 ◽  
Vol 281 (5) ◽  
pp. 1337-1342 ◽  
Author(s):  
Jang-Hee Hong ◽  
Seo-Ok Oh ◽  
Michael Lee ◽  
Young-Rae Kim ◽  
Dong-Uk Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document