juxtamembrane region
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 16)

H-INDEX

45
(FIVE YEARS 4)

2021 ◽  
Vol 22 (24) ◽  
pp. 13556
Author(s):  
Noa Barak-Broner ◽  
Dafna Singer-Lahat ◽  
Dodo Chikvashvili ◽  
Ilana Lotan

The polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin1A (Syx), was previously shown by us to act as a fusion clamp in PC12 cells, as charge neutralization of 5RK promotes spontaneous and inhibits Ca2+-triggered release. Using a Syx-based FRET probe (CSYS), we demonstrated that 5RK is required for a depolarization-induced Ca+2-dependent opening (close-to-open transition; CDO) of Syx, which involves the vesicular SNARE synaptobrevin2 and occurs concomitantly with Ca2+-triggered release. Here, we investigated the mechanism underlying the CDO requirement for 5RK and identified phosphorylation of Syx at Ser-14 (S14) by casein kinase 2 (CK2) as a crucial molecular determinant. Thus, following biochemical verification that both endogenous Syx and CSYS are constitutively S14 phosphorylated in PC12 cells, dynamic FRET analysis of phospho-null and phospho-mimetic mutants of CSYS and the use of a CK2 inhibitor revealed that the S14 phosphorylation confers the CDO requirement for 5RK. In accord, amperometric analysis of catecholamine release revealed that the phospho-null mutant does not support Ca2+-triggered release. These results identify a functionally important CK2 phosphorylation of Syx that is required for the 5RK-regulation of CDO and for concomitant Ca2+-triggered release. Further, also spontaneous release, conferred by charge neutralization of 5RK, was abolished in the phospho-null mutant.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3667-3667
Author(s):  
Tariq Kewan ◽  
Hrishikesh M Mehta ◽  
Carmelo Gurnari ◽  
Waled Bahaj ◽  
Simona Pagliuca ◽  
...  

Abstract Somatic and germline (GL) variants of CSF3R are found in myeloid neoplasia (MN) and severe congenital neutropenia (SCN). In particular, somatic gain-of-function mutations in the juxtamembrane region of the receptor occur in chronic neutrophilic leukemia (CNL) or secondary AML. Another hotspot for somatic nonsense variants frequently mutated in these categories of pts involves the intracellular domain which regulates inhibitory growth pathways. We hypothesized that the somatic CSF3R variants could reveal previously unrecognized GL SCN mutations. When we studied a cohort of 2,610 pts with MN, we identified a total of 68 CSF3R variants (CSF3RMT). Using a bioanalytic pipeline, we assigned pathogenicity and type of origin (somatic vs. GL) to these variants, particularly those not previously described. In total, we found 32 GL (CSF3RGL) and 36 somatic (CSF3RS) mutations. Of the GL variants, 4 were previously described in pts with SCN consistent with heterozygous loss of function of the CSF3R gene. However, 15 additional alterations were located in similar regions and were predicted to be pathogenic while 13 variants were previously never described. Most of the CSF3RGL mutations were identified in pts with AML and MDS (88%). Interestingly, 2 (6%) pts had co-existing idiopathic neutropenia that progressed to secondary MDS. Another pt had aplastic anemia that eventually progressed to secondary AML. CSF3RGL were most often located in either the intracellular domain (44%) or the extracellular domain (34%) while none of the CSF3RGL mutations were found in the juxtamembrane region (Fig1). AML was detected in 21% of the pts with a CSF3RGL intracellular domain mutation and 18% of the pts with extracellular domain mutations. Of the germline missense variants, E808K (28%), R698C (9%), and E149D (9%) were the most frequently detected. Among the pts with E808K, 22% developed AML. The previously non-reported variants were detected in either the intracellular (50%) or the extracellular domain (50%). Missense variants were detected in 9/10 of the novel mutations in the following locations: L723V (20%), R428K (10%), G731R (10%), V406fs (10%), G687S (10%), P682H (10%), T154I (10%), and S413L (10%). One truncating mutation was found (c.1865-6delC) and it was located in intron 14 and has unknown impact on CSF3R function. Complex karyotype was noted in 19 % of the cases with CSF3RGL. DNMT3A (19%), NRAS (13%), FLT3 (9%), and BCOR (9%), were the most commonly found co-mutations. CSF3R S mutations were all heterozygous and found in 18 pts with AML and 18 pts with MDS and other MN. Overall, these lesions mapped within the intracellular proximal and distal domains (53%), the extracellular domain (14%) the juxtamembrane domain (25%), and the transmembrane domain (8%). Of note, MDS/MPN pts with CSF3RS mutations (11%) had lesions distributed between the intracellular, juxtamembrane and extracellular domains while none of the AML pts had mutations in the extracellular domain. Of all mutations, 36% were truncating events previously described in the context of post SCN AML while 61% were missense mutations. T618I was the most frequent CSF3RS detected (25%), followed by Q749X (11%), Q741X (9%), Q743X (6%). Juxtamembrane hits (CNL-like lesion) were all in the same canonical region (T618I). In contrast, somatic hits otherwise typical for post SCN AML were found in 33% of CSF3RS alterations and included the following: Q749X(4), Q741X (3), Q739X (2), S742X, Q743X, and E405K (not typical for post SCN AML). Taken together the combined allelic burden of these variants did not exceed that of general population (OR: 0.9503) suggesting that they are not significant risk alleles. Of note is that none of these variants were found to be in biallelic (somatic/GL) configurations. Complex karyotype was found in 19% of the pts with CSF3RS followed by del7q in 13% of cases. Importantly, an antecedent history of neutropenia was noted only in 14% of the pts carrying CSF3RS. Regarding associated mutations, ASXL1 (43%), RUNX1 (23%), SETBP1 (23%), TET2 (23%), DNMT3A (17%), SRSF2 (16%), EZH2 (14%), IDH2 (11%), and NRAS (11%) were the most common co-mutations. We have investigated CSF3RS mutations for the presence of GL alterations, but compound heterozygous configurations were not identified. We concluded that CSF3R mutations typically associated with SCN transformation to myeloid neoplasia can occur without GL variants associated with this defect. Figure 1 Figure 1. Disclosures Balasubramanian: Servier Pharmaceuticals: Research Funding. Patel: Apellis: Consultancy, Other: educational talks, Speakers Bureau; Alexion: Consultancy, Other: educational talks, Speakers Bureau. Advani: Kite Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Research Funding; Glycomimetics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees, Research Funding; OBI: Research Funding; Immunogen: Research Funding; Amgen: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Research Funding; Macrogenics: Research Funding. Carraway: AbbVie: Other: Independent review committee; Agios: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Stemline: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Takeda: Other: Independent review committee; Astex: Other: Independent review committee; Jazz: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene, a Bristol Myers Squibb company: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Maciejewski: Novartis: Consultancy; Regeneron: Consultancy; Bristol Myers Squibb/Celgene: Consultancy; Alexion: Consultancy.


2021 ◽  
Vol 22 (20) ◽  
pp. 11282
Author(s):  
Lidia Ruiz-Llorente ◽  
M. Cristina Vega ◽  
Francisco J. Fernández ◽  
Carmen Langa ◽  
Nicholas W. Morrell ◽  
...  

Endoglin (Eng, CD105) is a type I membrane glycoprotein that functions in endothelial cells as an auxiliary receptor for transforming growth factor β (TGF-β)/bone morphogenetic protein (BMP) family members and as an integrin ligand, modulating the vascular pathophysiology. Besides the membrane-bound endoglin, there is a soluble form of endoglin (sEng) that can be generated by the action of the matrix metalloproteinase (MMP)-14 or -12 on the juxtamembrane region of its ectodomain. High levels of sEng have been reported in patients with preeclampsia, hypercholesterolemia, atherosclerosis and cancer. In addition, sEng is a marker of cardiovascular damage in patients with hypertension and diabetes, plays a pathogenic role in preeclampsia, and inhibits angiogenesis and tumor proliferation, migration, and invasion in cancer. However, the mechanisms of action of sEng have not yet been elucidated, and new tools and experimental approaches are necessary to advance in this field. To this end, we aimed to obtain a fluorescent form of sEng as a new tool for biological imaging. Thus, we cloned the extracellular domain of endoglin in the pEGFP-N1 plasmid to generate a fusion protein with green fluorescent protein (GFP), giving rise to pEGFP-N1/Eng.EC. The recombinant fusion protein was characterized by transient and stable transfections in CHO-K1 cells using fluorescence microscopy, SDS-PAGE, immunodetection, and ELISA techniques. Upon transfection with pEGFP-N1/Eng.EC, fluorescence was readily detected in cells, indicating that the GFP contained in the recombinant protein was properly folded into the cytosol. Furthermore, as evidenced by Western blot analysis, the secreted fusion protein yielded the expected molecular mass and displayed a specific fluorescent signal. The fusion protein was also able to bind to BMP9 and BMP10 in vitro. Therefore, the construct described here could be used as a tool for functional in vitro studies of the extracellular domain of endoglin.


2021 ◽  
Author(s):  
Lung-Yu Liang ◽  
Michael Roy ◽  
Christopher Horne ◽  
Jarrod J Sandow ◽  
Minglyanna Surudoi ◽  
...  

EphB6 and EphA10 are two poorly characterised pseudokinase members of the Eph receptor family, which collectively serves as mediators of contact-dependent cell-cell communication to transmit extracellular cues into intracellular signals. As per their active counterparts, EphB6 and EphA10 deregulation is strongly linked to proliferative diseases. However, unlike active Eph receptors, whose catalytic activities are thought to initiate an intracellular signalling cascade, EphB6 and EphA10 are classified as catalytically-dead, raising the question of how non-catalytic functions contribute to Eph receptor signalling homeostasis. In this study, we have characterised the biochemical properties and topology of the EphB6 and EphA10 intracellular regions comprising the juxtamembrane region, pseudokinase and SAM domains. Using small-angle X-ray scattering and crosslinking-mass spectrometry, we observed high flexibility within their intracellular regions in solution and a propensity for interaction between the component domains. We identified tyrosines in the juxtamembrane region of EphB6 as EphB4 substrates, which can bind the SH2 domains of signalling effectors, including Abl, Src and Vav3, consistent with cellular roles in recruiting these proteins for downstream signaling. Furthermore, our finding that EphB6 and EphA10 can bind ATP and ATP-competitive small molecules raises the prospect that these pseudokinase domains could be pharmacologically-targeted to counter oncogenic signalling.


2020 ◽  
Author(s):  
Linda Hanbouch ◽  
Béatrice Schaack ◽  
Amal Kasri ◽  
Gaëlle Fontaine ◽  
Eleni Gkanatsiou ◽  
...  

AbstractBackgroundThe brains of patients with Alzheimer’s disease (AD) reveal increased cellular membrane levels of cholesterol. Correspondingly, we previously showed that elevating levels of membrane cholesterol in neuronal cultures recapitulates early AD phenotypes including excessive cleavage of amyloid β (Aβ) peptides from the amyloid precursor protein (APP). Here we aimed to evaluate how the presence of a cholesterol-binding site (CBS) in the transmembrane and juxtamembrane regions of APP regulates its processing.MethodsWe generated seven single and two double APP mutants at amino acid positions 22, 26, 28, 29, 33, 39 of the Aβ sequence changing the charge and/or hydrophobicity of the targeted amino acids. HEK293T cells were transfected with APP constructs and secreted Aβ peptides were measured using ELISA and mass spectrometry (MS). APP processing in normal and high cholesterol condition, and endocytosis were assessed in stably expressing APPwt and APPK28A HEK293T clones. Finally, we measured the binding of synthetic peptides derived from the Aβ sequence to cholesterol-rich exosomes purified from control HEK293T cells.ResultsMost mutations triggered a reduction in the production of Aβ40 and Aβ42 peptides, whereas only juxtamembrane mutants resulted in the generation of shorter Aβ peptides. We confirmed by mass spectrometry this specific change in the profile of secreted Aβ peptides for the most characteristic APPK28A mutant. A transient increase of plasma membrane cholesterol enhanced the production of Aβ40 by APPWT, an effect absent with APPK28A. The enzymatic activity of α-, β- and γ-secretases remained unchanged in cells expressing APPK28A. Similarly, APPK28A subcellular localization in early endosomes did not differ to APPWT. Finally, WT but not CBS mutant Aβ derived peptides bound to cholesterol-rich exosomes.ConclusionsTaken together, these data reveal a major role of the juxtamembrane region of APP in binding to cholesterol and accordingly in the regulation of APP processing. Binding of cholesterol to K28 could staple APP to the juxtamembrane region thereby permitting access to γ-secretase cleavage at positions 40-42. The APPK28 mutant would lie deeper in the membrane, facilitating the production of shorter Aβ peptides and unveiling this specific region as a novel target for reducing the production of toxic Aβ species.


2020 ◽  
Vol 477 (19) ◽  
pp. 3791-3801
Author(s):  
Liang Ge ◽  
Bo Wu ◽  
Youjia Zhang ◽  
Jiarong Wang ◽  
Hongxin Zhao ◽  
...  

Vav2 is a ubiquitous guanine nucleotide exchange factor (GEF) for Rho family GTPases that is involved in regulating a wide range of biological processes. It interacts with several tyrosine-phosphorylated cell surface receptors, including the Eph family receptors, through its SH2 domain. The interaction of Vav2 with EphA2 is crucial for EphA2-mediated tumor angiogenesis. Here we show that Vav2–SH2 domain is a lipid-binding module that can recognize PI(4,5)P2 and PI(3,4,5)P3 lipids weakly but specifically. The specific lipid-binding site in Vav2–SH2 domain was identified by NMR chemical shift perturbation experiments using the head groups of PI(4,5)P2 and PI(3,4,5)P3, both of which bind to Vav2–SH2 with millimolar binding affinities. In addition, the interaction between Vav2–SH2 and the phosphorylated juxtamembrane region (JM) of EphA2 (Y594 phosphorylated) was investigated using NMR techniques. Furthermore, by using a nickel–lipid containing peptide-based nanodiscs system, we studied the binding of Vav2–SH2 to the phosphorylated JM region of EphA2 on lipid membrane and uncovered a role of membrane environment in modulating this protein–protein recognition.


2020 ◽  
Author(s):  
Noa Barak-Broner ◽  
Dafna Singer-Lahat ◽  
Dodo Chikvashvili ◽  
Ilana Lotan

AbstractThe polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin1A (Syx), was shown by us to act as a fusion clamp in PC12 cells, making release dependent on stimulation by Ca2+. By using a Syx-based FRET probe, we demonstrated that 5RK is absolutely required for a depolarization-induced Ca+2-dependent, close-to-open transition (CDO) of Syx that involves the vesicular SNARE synaptobrevin2 and occurs concomitantly with Ca2+-triggered release. Here, we investigated the mechanism underlying the 5RK requirement, and identified phosphorylation of Syx at Ser-14 (S14) by protein kinase CK2 as a crucial molecular determinant. Following biochemical verification that both endogenous Syx and CSYS are constitutively S14 phosphorylated in PC12 cells, dynamic FRET analysis of phospho-null and phospho-mimetic mutants of CSYS and the use of a CK2 inhibitor revealed that it is the S14 phosphorylation that confers the 5RK requirement. Concomitant amperometric analysis of catecholamine release revealed that the phospho-null mutants do not support release, spontaneous and evoked. Collectively, these results identify a functionally important CK2 phosphorylation site in Syx that is required for 5RK-regulation of CDO and for concomitant Ca2+-triggered release.Summary statementMany phospho-proteins participate in vesicle exocytosis. We show that a recently identified structural transition of syntaxin1A that accompanies Ca2+-regulated exocytosis in neuroendocrine cells is controlled by CK2 phosphorylation of syntaxin1A.


2020 ◽  
Vol 295 (35) ◽  
pp. 12343-12352 ◽  
Author(s):  
Ryo Iwagishi ◽  
Rika Tanaka ◽  
Munenosuke Seto ◽  
Tomoyo Takagi ◽  
Naoko Norioka ◽  
...  

Ectodomain shedding is a post-translational modification mechanism by which the entire extracellular domain of membrane proteins is liberated through juxtamembrane processing. Because shedding rapidly and irreversibly alters the characteristics of cells, this process is properly regulated. However, the molecular mechanisms governing the propensity of membrane proteins to shedding are largely unknown. Here, we present evidence that negatively charged amino acids within the stalk region, an unstructured juxtamembrane region at which shedding occurs, contribute to shedding susceptibility. We show that two activated leukocyte cell adhesion molecule (ALCAM) protein variants produced by alternative splicing have different susceptibilities to ADAM metallopeptidase domain 17 (ADAM17)-mediated shedding. Of note, the inclusion of a stalk region encoded by a 39-bp-long alternative exon conferred shedding resistance. We found that this alternative exon encodes a large proportion of negatively charged amino acids, which we demonstrate are indispensable for conferring the shedding resistance. We also show that the introduction of negatively charged amino acids into the stalk region of shedding-susceptible ALCAM variant protein attenuates its shedding. Furthermore, we observed that negatively charged amino acids residing in the stalk region of Erb-B2 receptor tyrosine kinase 4 (ERBB4) are indispensable for its shedding resistance. Collectively, our results indicate that negatively charged amino acids within the stalk region interfere with the shedding of multiple membrane proteins. We conclude that the composition of the stalk region determines the shedding susceptibility of membrane proteins.


2020 ◽  
Vol 295 (13) ◽  
pp. 4289-4302 ◽  
Author(s):  
Yukako Oda ◽  
Taichi Sugawara ◽  
Yuko Fukata ◽  
Yasushi Izumi ◽  
Tetsuhisa Otani ◽  
...  

Tricellular tight junctions (tTJs) create paracellular barriers at tricellular contacts (TCs), where the vertices of three polygonal epithelial cells meet. tTJs are marked by the enrichment of two types of membrane proteins, tricellulin and angulin family proteins. However, how TC geometry is recognized for tTJ formation remains unknown. In the present study, we examined the molecular mechanism for the assembly of angulin-1 at the TCs. We found that clusters of cysteine residues in the juxtamembrane region within the cytoplasmic domain of angulin-1 are highly palmitoylated. Mutagenesis analyses of the cysteine residues in this region revealed that palmitoylation is essential for localization of angulin-1 at TCs. Consistently, suppression of Asp-His-His-Cys motif–containing palmitoyltransferases expressed in EpH4 cells significantly impaired the TC localization of angulin-1. Cholesterol depletion from the plasma membrane of cultured epithelial cells hampered the localization of angulin-1 at TCs, suggesting the existence of a lipid membrane microdomain at TCs that attracts highly palmitoylated angulin-1. Furthermore, the extracellular domain of angulin-1 was also required for its TC localization, irrespective of the intracellular palmitoylation. Taken together, our findings suggest that both angulin-1's extracellular domain and palmitoylation of its cytoplasmic region are required for its assembly at TCs.


2020 ◽  
Vol 477 (1) ◽  
pp. 45-60 ◽  
Author(s):  
N.G. Eissa ◽  
E.J. Sayers ◽  
D. Birch ◽  
S.G. Patel ◽  
Y.-H. Tsai ◽  
...  

Membrane-active peptides have been extensively studied to probe protein–membrane interactions, to act as antimicrobial agents and cell-penetrating peptides (CPPs) for the delivery of therapeutic agents to cells. Hundreds of membrane-active sequences acting as CPPs have now been described including bioportides that serve as single entity modifiers of cell physiology at the intracellular level. Translation of promising CPPs in pre-clinical studies have, however, been disappointing as only few identified delivery systems have progressed to clinical trials. To search for novel membrane-active peptides a sequence from the EGFR juxtamembrane region was identified (named EJP18), synthesised, and examined in its L- and D-form for its ability to mediate the delivery of a small fluorophore and whole proteins to cancer cell lines. Initial studies identified the peptide as being highly membrane-active causing extensive and rapid plasma membrane reorganisation, blebbing, and toxicity. At lower, non-toxic concentrations the peptides outperformed the well-characterised CPP octaarginine in cellular delivery capacity for a fluorophore or proteins that were associated with the peptide covalently or via ionic interactions. EJP18 thus represents a novel membrane-active peptide that may be used as a naturally derived model for biophysical protein–membrane interactions or for delivery of cargo into cells for therapeutic or diagnostic applications.


Sign in / Sign up

Export Citation Format

Share Document