scholarly journals Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step

2016 ◽  
Vol 1022 ◽  
pp. 87-92 ◽  
Author(s):  
María C. Porfirif ◽  
Esteban J. Milatich ◽  
Beatriz M. Farruggia ◽  
Diana Romanini
2017 ◽  
Vol 228 ◽  
pp. 159-167 ◽  
Author(s):  
Caio S. Takiya ◽  
Gustavo D. Calomeni ◽  
Thiago Henrique Silva ◽  
Thiago Henrique A. Vendramini ◽  
Guilherme G. Silva ◽  
...  

2021 ◽  
Author(s):  
Ashley Sousa

Cellulosic ethanol has shown promise as a feasible alternative fuel, especially if the hydrolysis of lignocellulosic biomass is done through a single step process known as consolidated bioprocessing (CBP). A major challenge for CBP, especially for large-scale industrial applications is the inhibition of celluloytic microorganisms by ethanol. While recombinant DNA technology and microbial acclimatization by exposure have resulted in some increase in ethanol tolerance, the search remains for robust bacteria that can proliferate in industrially-relevant conditions. This study applied an anaerobic gradient system to provide a continous spatial pathway for the selection of cellulolytic consortia with increased tolerance to ethanol. DGGE analysis showed that increasing concentrations of ethanol impacts the community profile. Biofilm formation of cellulose degrading communities has been found to be influenced by species diversity. Environmental gradients have shown promise for selective enrichment of cellulolytic consortia at desired conditions required for industrial application.


1977 ◽  
Vol 34 (1) ◽  
pp. 1-6 ◽  
Author(s):  
M Yabuki ◽  
N Ono ◽  
K Hoshino ◽  
S Fukui

Author(s):  
Koki Makabe ◽  
Ruka Hirota ◽  
Yoshihito Shiono ◽  
Yoshikazu Tanaka ◽  
Takuya Koseki

The rutinosidase-encoding gene Aorut has been expressed in Pichia pastoris with its native signal sequence from Aspergillus oryzae. Biochemical and structural investigation of the purified recombinant mature AoRut, designated as rAoRutM, was performed in this study. A 1.7 Å resolution crystal structure of rAoRutM was determined, which is an essential step forward in the utilization of AoRut as a potential catalyst. The crystal structure of rAoRutM was represented by a (β/α)8 TIM barrel fold with structural similarity to rutinosidase from Aspergillus niger (AnRut) and an exo-β (1, 3)-glucanase from Candida albicans. The crystal structure revealed that the catalytic site was located in a deep cleft, similar to AnRut, and internal cavities and water molecules were also present. Purified rAoRutM hydrolyzed not only 7-O-linked and 3-O-linked flavonoid rutinosides, but also 7-O-linked and 3-O-linked flavonoid glucosides. rAoRutM displayed high catalytic activity toward quercetin 3-O-linked substrates such as rutin and isoquercitrin, rather than the 7-O-linked substrate, quercetin-7-O-glucoside. Unexpectedly, purified rAoRutM exhibited increased thermostability after treatment with endo-β-N-acetylglucosaminidase H. Circular dichroism (CD) spectra of purified intact rAoRutM and the enzyme after N-deglycosylation showed a typical α-helical CD profile, however, the molar ellipticity values of the peaks at 208 nm and 212 nm varied. The Km and kcat values for the substrates modified by rutinose were higher than those for substrates modified by β-D-glucose. Importance Flavonoid glycosides constitute a class of secondary metabolites widely distributed in nature. These compounds are involved in the bitter taste or clouding in plant-based foods or beverages, respectively. Flavonoid glycoside degradation can proceed through two alternative enzymatic pathways: one that is mediated by monoglycosidases, and the other catalyzed by a diglycosidase. The present study on the biochemical and structural investigation of A. oryzae rutinosidase provides a potential biocatalyst for industrial applications of flavonoids.


Author(s):  
P. Toumsri ◽  
W. Auppahad ◽  
S. Saknaphawuth ◽  
B. Pongtawornsakun ◽  
S. Kaowphong ◽  
...  

Furfural is a valuable dehydration product of xylose. It has a broad spectrum of industrial applications. Various catalysts containing SO 3 H have been reported for the conversion of xylose into furfural. Nevertheless, the multi-step preparation is tedious, and the catalysts are usually fine powders that are difficult to separate from the suspension. Novel magnetic mesoporous carbonaceous materials (Fe/MC) were successfully prepared via facile self-assembly in a single step. A facile subsequent hydrothermal sulfonation of Fe/MC with concentrated H 2 SO 4 at 180°C gave mesoporous carbon bearing SO 3 H groups (SO 3 H@Fe/MC) without loss of the magnetic properties. Various techniques were employed to characterize the SO 3 H@Fe/MC as a candidate catalyst. It showed strong magnetism due to its Fe particles and possessed a 243 m 2  g −1 BET-specific surface area and a 90% mesopore volume. The sample contained 0.21 mmol g −1 of SO 3 H and gave a high conversion and an acceptable furfural yield and selectivity (100%, 45% and 45%, respectively) when used at 170°C for 1 h with γ-valerolactone as solvent. The catalyst was easily separated after the catalytic tests by using a magnet, confirming sufficient magneticstability. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)’.


Sign in / Sign up

Export Citation Format

Share Document