Biotechnologia Acta
Latest Publications


TOTAL DOCUMENTS

488
(FIVE YEARS 250)

H-INDEX

6
(FIVE YEARS 5)

Published By Co. Ltd. Ukrinformnauka

2410-776x, 2410-7751
Updated Saturday, 16 October 2021

2021 ◽  
Vol 14 (4) ◽  
pp. 53-63
Author(s):  
O. M. Yaroshko ◽  

Local cultivars of A. caudatus: Helios and Karmin were used as plant material. Amaranth is a new pseudocereal introduced in Ukraine. The plant biomass of amaranth is used in medicine, food industry and cosmetology industry. Aim. The purpose of the work was to identify the optimal conditions for the transient expression of reporter genes in Amaranthus caudatus cultivars. Methods. Biochemical and microscopy methods were used in the following work. Seedlings and adult plants of different age were infiltrated with agrobacterial suspensions separately (genetic vector pCBV19 with a uidA gene and genetic vector pNMD2501 with a gfp gene in Agrobacterium tumefaciens GV3101 strain). Results. Transient expression of the uidA and gfp genes was obtained in amaranth plants after conduction series of experiments. The most intensive transient expression of gfp and uidA genes was observed in seedlings infiltrated at the age of 1 day. The maximum fluorescence of the GFP protein was observed on 5th–6th days. Conclusions. It was shown that the cultivar Helios was more susceptible to agrobacterial infection than the cultivar Karmin. The effectiveness of Agrobacterium mediated transformation was from 16% to 95% for the Helios cultivar and from 12% to 93% for the Karmin cultivar. The obtained results indicate that the studied amaranth cultivars can potentially be used for obtaining transient expression of target genes and synthesizing target proteins in their tissues in the future.


2021 ◽  
Vol 14 (4) ◽  
pp. 64-69
Author(s):  
N. V. Sych ◽  

The creation of effective drugs for the prevention and treatment of atherosclerosis is one of the urgent interdisciplinary tasks for modern chemistry and pharmacology. Given the role of hypercholesterolemia in the development of this disease, it is necessary to remove excess amounts of cholesterol from the body. As an alternative to means of lowering total cholesterol and low-density lipoprotein (LDL) cholesterol, the possibility of using carbon enterosorbents for efferent therapy is considered. Aim. The purpose of the study was to evaluate the sorption capacity of the adsorbents developed by authors in terms of the possibility of cholesterol adsorption. Methods. Using the spectrophotometric method, the sorption of cholesterol on samples of adsorbents obtained by chemical activation of waste from the processing of lignocellulosic raw materials — dogwood and coffee residue has been studied. Results. A comparison of sorption isotherms with the isotherm obtained on the industrial adsorbent SORBEX has been performed. It was shown that the adsorption capacity of carbon adsorbents is primarily determined by their porous structure. The highest sorption values (7,3 mg/g) have been revealed by the sorption material obtained by chemical activation of cornel seed, an intermediate position (6,3 mg/g) is occupied by the adsorbent obtained from the coffee residue. Industrial carbon SORBEX has the lowest sorption values (5,3 mg/g). Conclusions. Calculations by Langmuir’s and Freundlich’s models testify about the accordance of the experimental data to Langmuir’s model. The use of the obtained activated carbons may be one of the effective alternative ways to lower blood cholesterol.


2021 ◽  
Vol 14 (4) ◽  
pp. 5-27
Author(s):  
I. Kryvoshlyk ◽  

Cancer metastasis and recurrence are the leading causes of cancer-related death. Tumor cells which leave the primary or secondary tumors and shed into the bloodstream are called circulating tumor cells (CTC). These cells are the key drivers of cancer dissemination to surrounding tissues and to distant organs. The use of CTC in clinical practice necessitates the deep insight into their biology, as well as into their role in cancer evasion of immune surveillance, tumor resistance to chemo- radio- and immunotherapies and metastatic dormancy. Aim. The purpose of the work was to review the current knowledge on the CTC biology, as well as the prospects for their use for the diagnosis and targeted treatment of metastatic disease. Methods. The work proposed the integrative literature review using MEDLINE, Biological Abstracts and EMBASE databases. Results. This review summarizes and discusses historical milestones and current data concerning СTС biology, the main stages of their life cycle, their role in metastatic cascade, clinical prospects for their use as markers for the diagnosis and prognostication of the disease course, as well as targets for cancer treatment. Conclusions. Significant progress in the area of CTC biology and their use in cancer theranostics convincingly proved the attractiveness of these cells as targets for cancer prognosis and therapy. The effective use of liquid biopsy with quantitative and phenotypic characteristics of CTCs is impeded by the imperfection of the methodology for taking biological material and by the lack of reliable markers for assessing the metastatic potential of CTCs of various origins. The variety of mechanisms of tumor cells migration and invasion requires the development of complex therapeutic approaches for anti-metastatic therapy targeting CTCs. Efforts to address these key issues could help developing new and effective cancer treatment strategies.


2021 ◽  
Vol 14 (4) ◽  
pp. 80-87
Author(s):  
L. Sabliy ◽  

Wastewater generated during vegetable oil production contains various pollutants that enter it during soapstock processing: fats and fatty acids and their salts (aqueous soap solutions), glycerin, phosphoglycerates, neutral fat, phosphatides, proteins, carbohydrates, dyes, unsaponifiable and waxy substances, salts, mechanical impurities, etc. Aim. The purpose of the work was to study the processes of purification of industrial wastewater from oil production and to propose an effective technology for their treatment, taking into account the regulatory requirements for the discharge of treated wastewater into the city sewage system. Methods. Chemical oxygen demand (COD) was determined by the dichromate method. The concentration of suspended solids was determined by gravimetric method. Results. As a result of research, calcium carbonate was chosen as an alkaline reagent. After treatment of soapstock with calcium carbonate followed by flotation, the effect of removing the suspended particles was 70–75%, and COD decreased by 60%. On the basis of the research, a technology for processing soapstock was proposed, including sequential processes of physicochemical wastewater treatment —averaging, alkalization with calcium carbonate, stage I of flotation, coagulation, stage II of flotation, oxidation with hydrogen peroxide, filtration through quartz filters and adsorption on carbon filters. Conclusion. An effective technology for preliminary cleaning of the soapstocks oil production has been developed. This will significantly reduce the concentration of organic matter and other pollutants in soapstocks, which will significantly reduce the impact of such effluents on the processes of biological wastewater treatment of urban wastewater treatment plants.


2021 ◽  
Vol 14 (4) ◽  
pp. 28-37
Author(s):  
Yu. Krasnopolsky ◽  

Rabies is a neurological disease of a viral nature, leading to death. Rabies virus is an RNA virus that invades the central nervous system, leading to neuronal dysfunction. Timely vaccination can prevent the diseases development. Aim. The article is devoted to immunobiotechnological research aimed at creating antirabic vaccines. Results. The history of the antirabic vaccines creation from the first inactivated vaccines obtained from nervous tissue to the cultivation of the virus on animal cell cultures is considered. The article presents commercially available anti-rabies vaccines: their composition, the used rabies virus strains, cell cultures, the methods of inactivation and purification. The technology of producing an anti-rabies vaccine based on a Pitman Moore virus strain and a chicken fibroblast cell culture is presented. The advantages of different vaccine types are considered: live attenuated, peptide, liposomal, RNA vaccines, vaccines based on viral vectors, transgenic plants and reverse genetics methods. Conclusions. The development of biotechnology, immunology and virology makes it possible to improve constantly vaccine preparations, including those against rabies, increasing their effectiveness and safety.


2021 ◽  
Vol 14 (4) ◽  
pp. 38-52
Author(s):  
N. I. Aralova ◽  

The main complications of organism damaged by SARS-CoV-2 virus are various cardiovascular system lesions. As a result, the secondary tissue hypoxia is developed and it is relevant to search the means for hypoxic state alleviation. Mathematical modeling of this process, followed by the imitation of hypoxic states development, and subsequent correction of hypoxia at this model may be one of the directions for investigations. Aim. The purpose of this study was to construct mathematical models of functional respiratory and blood circulatory systems to simulate the partial occlusion of blood vessels during viral infection lesions and pharmacological correction of resulting hypoxic state. Methods. Methods of mathematical modeling and dynamic programming were used. Transport and mass exchange of respiratory gases in organism, partial occlusion of blood vessels and influence of antihypoxant were described by the systems of ordinary nonlinear differential equations. Results. Mathematical model of functional respiratory system was developed to simulate pharmacological correction of hypoxic states caused by the complications in courses of viral infection lesions. The model was based on the theory of functional systems by P. K. Anokhin and the assumption about the main function of respiratory system. The interactions and interrelations of individual functional systems in organism were assumed. Constituent parts of our model were the models of transport and mass exchange of respiratory gases in organism, selforganization of respiratory and blood circulatory systems, partial occlusion of blood vessels and the transport of pharmacological substance. Conclusions. The series of computational experiments for averaged person organism demonstrated the possibility of tissue hypoxia compensation using pharmacological substance with vasodilating effect, and in the case of individual data array, it may be useful for the development of strategy and tactics for individual patient medical treatment.


2021 ◽  
Vol 14 (4) ◽  
pp. 70-79
Author(s):  
V. M. Hovorukha ◽  

The accumulation of solid and liquid organic waste requires their treatment to develop energy biotechnologies and prevent environment pollution. Aim. The goal of the work was to study the efficiency of the purification of the filtrate from dissolved organic compounds by aerobic oxidation and methane fermentation. Methods. The standard methods were used to determine рН and redox potential (Eh), the gas composition, the content of short-chain fatty acids, the concentration of dissolved organic compounds counting to the total сarbon. The efficiency of two types of microbial metabolism for the degradation of soluble organic compounds of filtrate was compared. Results. The aerobic oxidation was established to provide 1.9 times more efficient removal of dissolved organic compounds, compared with the anaerobic methane fermentation. However, it provided CH4 yield 1 L/dm3 of filtrate (сarbon concentration — 1071 mg/L). The necessity to optimize the methods for purifying filtrate to increase the efficiency of the process was determined. Conclusions. The obtained results will be the basis to develop complex biotechnology providing not only the production of environmentally friendly energy H2 via the fermentation of solid food waste, but also the purification of filtrate to solve the ecological and energy (CH4 production) problem of society.


2021 ◽  
Vol 14 (3) ◽  
pp. 22-29
Author(s):  
N.B. Golub ◽  

With the development of antibiotics application, their spread in the natural environment increases dramatically. The presence of antibiotics in the environment changes microorganism and other living beings ratio and composition, which causes a negative impact on biochemical processes that take place in the environment. The spread of antibiotic resistance genes in environmental microorganisms is a growing problem of environmental safety and human health. Aim. The objective of the work was to analyze the adaptation mechanisms of microorganisms to the influence of antibiotics and methods for antibiotics utilization. Results. The mechanisms of microorganisms’ adaptation to antibiotics are shown. The conditions for utilization of different antibiotics classes by microorganisms are provided. Conclusions. Methods of antibiotics destruction depend on its structure and physicochemical properties. Physico-chemical methods are used for local waste purification and are not suitable for antibiotics disposal in the natural environment. The decomposition products can also have a negative effect on the microorganisms’ cells. Depending on the class of antibiotics, their biodegradation occurs by different types of microorganisms. It has been shown that sulfonamides and amphinecoles are easily destroyed by many heterotrophic bacteria; biodegradation of aminoglycosides occurs by a strain of Pseudomonas spp.; tetracyclines - mushrooms; β-lactams - through the microorganisms’ association including: Burkholderiales, Pseudomonadales, Enterobacteriales, Actinomycetales, Rhizobiales, Sphingobacteriales. A consortium of destructors must be created to dispose of a specific classes of antibiotics.


2021 ◽  
Vol 14 (3) ◽  
pp. 62-66
Author(s):  
Sukumar Dandapat ◽  

Aim. The aim of this study was to investigate the impact of Pleurotus tuber-regium extract loaded silver nanoparticles (SNPs) on thyroid profile of rats. Methods. Acute toxicity test was performed following up and down procedure and the analysis of thyroid profile was performed following chemiluminescence assay method. Results. Acute toxicity test showed no mortality and no behavioral changes in rats treated with 2000 mg kg-1 of SNPs. High dose (400 mg kg-1) of SNPs showed high hyper thyroid activity by increasing T3 = 38.20±4.06 ng dL-1; T4 = 4.40±0.32µg dL-1; and by decreasing TSH = 0.73±0.06µIU mL-1 compared to control group (T3 = 30.20±1.02 ng dL-1; T4 = 2.94±0.08µg dL-1; TSH = 0.87±0.01µIU mL-1) and animal group treated with 200 mg kg-1 dose of SNPs (T3 = 35.69±1.13 ng dL-1; T4 = 3.82±0.24µg dL-1; TSH = 0.80±0.02µIU mL-1). Conclusions. Pleurous tuber-regium extract loaded silver nanoparticles are non toxic and can be used in drug delivery as well as in the formulation of drugs used in hypothyroidism.


2021 ◽  
Vol 14 (3) ◽  
pp. 46-53
Author(s):  
P. N Kuz'min ◽  

Xylotrophic fungi are well known by their ability to excrete enzymes into environment. These fungi have important biotechnological potential and some of them produce industrial enzymes. Besides, xylotrophic fungal species have recently attracted a lot of attention among researchers as a source of antibacterial drugs. Aim. To analyze the effect of the carbon source in the culture medium, as well as the conditions of deep cultivation on the mycelium yield, proteolytic, cellulolytic and antimicrobial activity of the culture liquid of Trichoderma atroviride. Methods. Deep culture methods were used, partial purification was carried out with salting and subsequent dialysis, the cellulolytic activity was determined spectrophotometrically, antimicrobial activity was determined using the disc diffusion technique. Statistical analysis was performed using STATISTICA 6.0 software. Results. The highest cellulolytic activity (0.50±0.03 units/ml), mycelium yield and the smallest colony diameter were detected when cellulose was used as a carbon source. However, the highest proteolytic activity of the culture liquid was observed with glucose as a carbon source. The optimal temperature range for hydrolase activity was shown to be in the range of 25-30 °C. In comparison with Pleurotus ostreatus, the culture liquid of T. atroviride not only has more pronounced antimicrobial activity, but also inhibits the growth of Candida albicans. Conclusions. The culture liquid of isolated strain T. atroviride is a promising source of hydrolytic enzymes that can be used in organic farming and industry. The purified preparation obtained from the culture liquid of T. atroviride showed significant antimicrobial activity and can be successfully used for drug development in the future.


Sign in / Sign up

Export Citation Format

Share Document