Topography versus Chemistry - how can we control Surface Wetting?

Author(s):  
Sarah Marie Lößlein ◽  
Frank Mücklich ◽  
Philipp Grützmacher
Author(s):  
L. S. Lin ◽  
K. P. Gumz ◽  
A. V. Karg ◽  
C. C. Law

Carbon and temperature effects on carbide formation in the carburized zone of M50NiL are of great importance because they can be used to control surface properties of bearings. A series of homogeneous alloys (with M50NiL as base composition) containing various levels of carbon in the range of 0.15% to 1.5% (in wt.%) and heat treated at temperatures between 650°C to 1100°C were selected for characterizations. Eleven samples were chosen for carbide characterization and chemical analysis and their identifications are listed in Table 1.Five different carbides consisting of M6C, M2C, M7C3 and M23C6 were found in all eleven samples examined as shown in Table 1. M6C carbides (with least carbon) were found to be the major carbide in low carbon alloys (<0.3% C) and their amounts decreased as the carbon content increased. In sample C (0.3% C), most particles (95%) encountered were M6C carbide with a particle sizes range between 0.05 to 0.25 um. The M6C carbide are enriched in both Mo and Fe and have a fee structure with lattice parameter a=1.105 nm (Figure 1).


AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1543-1557 ◽  
Author(s):  
Deman Tang ◽  
Denis Kholodar ◽  
Earl H. Dowell

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 651-653
Author(s):  
Denis B. Kholodar ◽  
Earl H. Dowell
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1433
Author(s):  
Ok-Hyeon Kim ◽  
Jun-Hyung Park ◽  
Jong-In Son ◽  
Ok-Ja Yoon ◽  
Hyun-Jung Lee

Suitable scaffolds with appropriate mechanical and biological properties can improve mesenchymal stromal cell (MSC) therapy. Because silk fibroins (SFs) are biocompatible materials, they were electrospun and applied as scaffolds for MSC therapy. Consequently, interferon (IFN)-primed human bone marrow MSCs on SF nanofibers were administered into a polymicrobial sepsis murine model. The IL-6 level gradually decreased from 40 ng/mL at 6 h after sepsis to 35 ng/mL at 24 h after sepsis. The IL-6 level was significantly low as 5 ng/mL in primed MSCs on SF nanofibers, and 15 ng/mL in primed MSCs on the control surface. In contrast to the acute response, inflammation-related factors, including HO-1 and COX-2 in chronic liver tissue, were effectively inhibited by MSCs on both SF nanofibers and the control surface at the 5-day mark after sepsis. An in vitro study indicated that the anti-inflammatory function of MSCs on SF nanofibers was mediated through enhanced COX-2-PGE2 production, as indomethacin completely abrogated PGE2 production and decreased the survival rate of septic mice. Thus, SF nanofiber scaffolds potentiated the anti-inflammatory and immunomodulatory functions of MSCs, and were beneficial as a culture platform for the cell therapy of inflammatory disorders.


2012 ◽  
Vol 226-228 ◽  
pp. 788-792 ◽  
Author(s):  
Dong Guo ◽  
Min Xu ◽  
Shi Lu Chen

This paper describes a multidisciplinary computational study undertaken to compute the flight trajectories and simultaneously predict the unsteady free flight aerodynamics of aircraft in time domain using an advanced coupled computational fluid dynamics (CFD)/rigid body dynamics (RBD) technique. This incorporation of the flight mechanics equations and controller into the CFD solver loop and the treatment of the mesh, which must move with both the control surface deflections and the rigid motion of the aircraft, are illustrated. This work is a contribution to a wider effort towards the simulation of aeroelastic and flight stability in regions where nonlinear aerodynamics, and hence potentially CFD, can play a key role. Results demonstrating the coupled solution are presented.


Sign in / Sign up

Export Citation Format

Share Document