Sustainability evaluation of the large-scale pig farming system in North China: an emergy analysis based on life cycle assessment

2015 ◽  
Vol 102 ◽  
pp. 144-164 ◽  
Author(s):  
Xiaolong Wang ◽  
Adamou Dadouma ◽  
Yuanquan Chen ◽  
Peng Sui ◽  
Wangsheng Gao ◽  
...  
Author(s):  
Tosin Onabanjo ◽  
Giuseppina Di Lorenzo

There is a large imbalance between demand and supply of energy in Nigeria, with inefficient power supply being the country’s greatest economic bane. Aside energy crisis, fuel is a luxurious commodity and petroleum diesel is the predominant fuel for power generation, particularly in the industrial sector. As a result, the country suffers from forced power outages, and persistent black out while residents and industries are forced to depend on self-generated electricity. These have notably reduced industrialization and increased environmental pollution across the country. This paper proposes the use of Jatropha biodiesel as a substitute fuel to petroleum diesel. It examines the energy efficiency and environmental life cycle impact of the production and use of 1MJ of Jatropha biodiesel in a typical 126 MW (ISO rating) industrial gas turbine power plant with multi-fuel capability using life cycle assessment methodologies and principles. A net energy ratio of 2.37, 1.54, and 1.32 and fossil fuel savings of 58%, 36% and 27% were achievable under three farming system scenarios: a) base-case rain-fed, b) base-case irrigated and c) large scale farming system. Also, an environmental benefit with GHG savings of 19% was attainable under the three farming scenarios. The results demonstrate that the contribution of GHGs and effect on climate change is most significant with the end use of the fuel. It also highlights the importance of clear definition of the reference system which should be indicative of the local production system and comparative to the system under study. A favourable business and economic climate driven by demand is proposed for Independent Power Producer (IPP) to generate power for off-grid users instead of generating power for the national grid using a decentralized Jatropha biodiesel production system coupled to waste to energy technologies. This could significantly improve the energy situation; diversify the energy generation mix and fuel supply in Nigeria, especially for small-scale businesses and the rural population.


2021 ◽  
Vol 13 (12) ◽  
pp. 6906
Author(s):  
Federica Rossi ◽  
Camilla Chieco ◽  
Nicola Di Virgilio ◽  
Teodoro Georgiadis ◽  
Marianna Nardino

While a substantial reduction of GHG (greenhouse gases) is urged, large-scale mitigation implies a detailed and holistic knowledge on the role of specific cropping systems, including the effect of management choices and local factors on the final balance between emissions and removals, this last typical of cropping systems. Here, a conventionally managed irrigated kiwifruit orchard has been studied to assess its greenhouse gases emissions and removals to determine its potential action as a C sink or, alternately, as a C source. The paper integrates two independent approaches. Biological CO2 fluxes have been monitored during 2012 using the micrometeorological Eddy covariance technique, while life cycle assessment quantified emissions derived from the energy and material used. In a climatic-standard year, total GHG emitted as consequence of the management were 4.25 t CO2-eq−1 ha−1 yr−1 while the net uptake measured during the active vegetation phase was as high as 4.9 t CO2 ha−1 yr−1. This led to a positive contribution of the crop to CO2 absorption, with a 1.15 efficiency ratio (sink-source factor defined as t CO2 stored/t CO2 emitted). The mitigating activity, however, completely reversed under extremely unfavorable climatic conditions, such as those recorded in 2003, when the efficiency ratio became 0.91, demonstrating that the occurrence of hotter and drier conditions are able to compromise the capability of Actinidia to offset the GHG emissions, also under appropriate irrigation.


2021 ◽  
Author(s):  
Dyah Ika Rinawati ◽  
Alexander Ryota Keeley ◽  
Shutaro Takeda ◽  
Shunsuke Managi

Abstract This study conducted a systematic literature review of the technical aspects and methodological choices in life cycle assessment (LCA) studies of using hydrogen for road transport. More than 70 scientific papers published during 2000–2021 were reviewed, in which more than 350 case studies of use of hydrogen in the automotive sector were found. Only some studies used hybrid LCA and energetic input-output LCA, whereas most studies addressed attributional process-based LCA. A categorization based on the life cycle scope distinguished case studies that addressed the well-to-tank (WTT), well-to-wheel (WTW), and complete life cycle approaches. Furthermore, based on the hydrogen production process, these case studies were classified into four categories: thermochemical, electrochemical, thermal-electrochemical, and biochemical. Moreover, based on the hydrogen production site, the case studies were classified as centralized, on-site, and on-board. The fuel cell vehicle passenger car was the most commonly used vehicle. The functional unit for the WTT studies was mostly mass or energy, and vehicle distance for the WTW and complete life cycle studies. Global warming potential (GWP) and energy consumption were the most influential categories. Apart from the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model and the Intergovernmental Panel on Climate Change for assessing the GWP, the Centrum voor Milieukunde Leiden method was most widely used in other impact categories. Most of the articles under review were comparative LCA studies on different hydrogen pathways and powertrains. The findings provide baseline data not only for large-scale applications, but also for improving the efficiency of hydrogen use in road transport.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2016 ◽  
Vol 139 ◽  
pp. 810-820 ◽  
Author(s):  
Shitong Peng ◽  
Tao Li ◽  
Mengmeng Dong ◽  
Junli Shi ◽  
Hongchao Zhang

2018 ◽  
Vol 192 ◽  
pp. 221-235 ◽  
Author(s):  
Yu Wang ◽  
Xihui Wu ◽  
Xiaogang Tong ◽  
Taotao Li ◽  
Faqi Wu

Sign in / Sign up

Export Citation Format

Share Document