Climate mitigation efficacy of anaerobic digestion in a decarbonising economy

2022 ◽  
pp. 130441
Author(s):  
David Styles ◽  
Jalil Yesufu ◽  
Martin Bowman ◽  
A. Prysor Williams ◽  
Colm Duffy ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 838
Author(s):  
Jon M. Wells ◽  
Susan E. Crow ◽  
Samir Kumar Khanal ◽  
Scott Turn ◽  
Andrew Hashimoto ◽  
...  

The efficacy of C4 grasses as feedstocks for liquid fuel production and their climate mitigation potential remain unresolved in the tropics. To identify highly convertible C4 grasses, we measured final fuels and postprocess biomass produced in two laboratory-scale conversion pathways across 12 species and varieties within the Poaceae (grass) family. Total mass, carbon, and energy in final fuels and postprocess biomass were assessed based on field mass and area-based production. Two lignocellulosic processes were investigated: (1) anaerobic digestion (AD) to methane and (2) hot water pretreatment and enzymatic hydrolysis (HWP-EH) to ethanol. We found AD converted lignocellulose to methane more efficiently in terms of carbon and energy compared to ethanol production using HWP-EH, although improvements to and the optimization of each process could change these contrasts. The resulting data provide design limitations for agricultural production and biorefinery systems that regulate these systems as net carbon sources or sinks to the atmosphere. Median carbon recovery in final fuels and postprocess biomass from the studied C4 grasses were ~5 Mg C ha−1 year−1 for both methane and ethanol, while median energy recovery was ~200 MJ ha−1 year−1 for ethanol and ~275 MJ ha−1 year−1 for methane. The highest carbon and energy recovery from lignocellulose was achieved during methane production from a sugarcane hybrid called energycane, with ~10 Mg C ha−1 year−1 and ~450 MJ ha−1 year−1 of carbon and energy recovered, respectively, from fuels and post-process biomass combined. Carbon and energy recovery during ethanol production was also highest for energycane, with ~9 Mg C ha−1 year−1 and ~350 MJ ha−1 year−1 of carbon and energy recovered in fuels and postprocess biomass combined. Although several process streams remain unresolved, agricultural production and conversion of C4 grasses must operate within these carbon and energy limitations for biofuel and bioenergy production to be an atmospheric carbon sink.


2021 ◽  
Vol 13 (22) ◽  
pp. 12810
Author(s):  
Vasiliki Kamperidou ◽  
Paschalina Terzopoulou

Nowadays, the climate mitigation policies of EU promote the energy production based on renewable resources. Anaerobic digestion (AD) constitutes a biochemical process that can convert lignocellulosic materials into biogas, used for chemical products isolation or energy production, in the form of electricity, heat or fuels. Such practices are accompanied by several economic, environmental and climatic benefits. The method of AD is an effective method of utilization of several different low-value and negative-cost highly available materials of residual character, such as the lignocellulosic wastes coming from forest, agricultural or marine biomass utilization processes, in order to convert them into directly usable energy. Lignin depolymerization remains a great challenge for the establishment of a full scale process for AD of lignin waste. This review analyzes the method of anaerobic digestion (biomethanation), summarizes the technology and standards involved, the progress achieved so far on the depolymerization/pre-treatment methods of lignocellulosic bio-wastes and the respective residual byproducts coming from industrial processes, aiming to their conversion into energy and the current attempts concerning the utilization of the produced biogas. Substrates’ mechanical, physical, thermal, chemical, and biological pretreatments or a combination of those before biogas production enhance the hydrolysis stage efficiency and, therefore, biogas generation. AD systems are immensely expanding globally, especially in Europe, meeting the high demands of humans for clean energy.


2019 ◽  
Vol 5 (4) ◽  
pp. 410-427 ◽  
Author(s):  
Ryan P. Thombs ◽  
Xiaorui Huang

The macro-comparative decoupling literature has often sought to test the arguments made by the treadmill of production (TP) and ecological modernization (EM) theories. However, due to data limitations, these studies have been limited to analyzing the years after 1960. Given that both theories discuss historical processes operating before 1960, analyzing pre-1960 data is warranted to more comprehensively test the propositions made by both theories. We assess the long-term relationship between economic growth and CO2 emissions from 1870 to 2014 using a sample of global North nations. We use Prais-Winsten regression models with time interactions to assess whether, when, and how much CO2 emissions have decoupled from economic growth over time. We find that significant relative decoupling has occurred twice since 1870: during the last 30 years of the nineteenth century, the timing of which is contrary to what both the EM and TP theories might expect, and after 1970. We also observe that the relationship remained relatively stable from the turn of the twentieth century to approximately 1970, which aligns with the arguments made by the classical TP work. We conclude that shifts in the global organization of production have shaped the magnitude of the economic growth–CO2 emissions relationship and its changes over time, which has implications for climate mitigation policy.


2014 ◽  
Vol 2014 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Chinenyenwa Nweke ◽  
◽  
Philomena Igbokwe ◽  
Joseph Nwabanne ◽  
◽  
...  

2014 ◽  
Vol 2014 (2) ◽  
pp. 71-80
Author(s):  
Chinenyenwa Nweke ◽  
◽  
Philomena Igbokwe ◽  
Joseph Nwabanne ◽  
◽  
...  

2015 ◽  
Vol 2 (1) ◽  
pp. 25-35 ◽  
Author(s):  
Chinenyenwa Nweke ◽  
◽  
Joseph Nwabanne ◽  
Philomena Igbokwe ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document