scholarly journals Gut-innervating TRPV1+ neurons drive chronic visceral pain via microglial P2Y12 receptor

Author(s):  
Manon Defaye ◽  
Nasser S. Abdullah ◽  
Mircea Iftinca ◽  
Ahmed Hassan ◽  
Francina Agosti ◽  
...  
Keyword(s):  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yanzhen Li ◽  
Hong Zhang ◽  
Jingwen Yang ◽  
Muouyang Zhan ◽  
Xuefei Hu ◽  
...  

Abstract Background The P2Y12 receptor is a kind of purinoceptor that is engaged in platelet aggregation, and P2Y12 inhibitors have been used in clinical antithrombotic therapy. The P2Y12 receptor in microglia induces interleukin-1β (IL-1β) expression, which is a key mediator of depression in the brain. Although peripheral P2Y12 is involved in neuropathic pain, whether P2Y12 expression in the medial prefrontal cortex (mPFC) is associated with comorbidities of visceral pain and depression remains unclear. Accumulating evidence suggests that electroacupuncture (EA) is effective in treating inflammatory bowel disease (IBD), but its mechanism is unknown. This study aimed to determine whether P2Y12 expression in the mPFC is associated with comorbidities of visceral pain and depression in IBD and whether EA treats IBD by targeting the P2Y12 receptor. Methods We used 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced IBD mice. P2Y12 short hairpin RNA (shRNA) was stereotaxically injected into the bilateral mPFC. EA was performed on bilateral “Dachangshu” (BL25) acupoints once a day for 7 days. Von Frey filaments and colorectal distension were used to detect the mechanical pain threshold and visceral pain sensitivity. The sucrose preference test, tail suspension test and forced swimming test were used to evaluate depression in mice. Western blotting was used to test the expression of P2Y12 and IL-1β. Immunofluorescence staining was used to assess microglial activity. Results We found that IBD mice presented visceral pain and depression associated with increased P2Y12 expression in the mPFC. P2Y12 shRNA significantly attenuated visceral pain and depression in IBD mice. P2Y12 shRNA significantly downregulated IL-1β expression and inhibited the activation of microglia in the mPFC of IBD mice. Meanwhile, EA played a similar role of P2Y12 shRNA. EA significantly downregulated P2Y12 expression, weakened the activation of microglia, and then inhibited IL-1β expression in the mPFC, thus relieving visceral pain and depression in IBD mice. Conclusion The present study provided new ideas that the P2Y12 receptor in the mPFC could be a new target for the treatment of comorbid visceral pain and depression by EA. This may not only deepen our understanding of the analgesic and antidepressant mechanisms of EA but also promote the application of EA to treat IBD.


2010 ◽  
Vol 34 (8) ◽  
pp. S22-S22
Author(s):  
Rong Wei ◽  
Ying Gao ◽  
Xiaoxue Ding ◽  
Ziqi Yue ◽  
Sha Wu ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A399-A399
Author(s):  
V LERAY ◽  
V SINNIGER ◽  
B ROCHE ◽  
M ODILECHRISTEN ◽  
S PHARMA ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Eduardo E. Valdez-Morales ◽  
Tonatiuh Barrios-García ◽  
Alma Barajas-Espinosa ◽  
Raquel Guerrero Alba

2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 278-279
Author(s):  
M Defaye ◽  
N Abdullah ◽  
M Iftinca ◽  
C Altier

Abstract Background Long-lasting changes in neural pain circuits precipitate the transition from acute to chronic pain in patients living with inflammatory bowel diseases (IBDs). While significant improvement in IBD therapy has been made to reduce inflammation, a large subset of patients continues to suffer throughout quiescent phases of the disease, suggesting a high level of plasticity in nociceptive circuits during acute phases. The establishment of chronic visceral pain results from neuroplasticity in nociceptors first, then along the entire neural axis, wherein microglia, the resident immune cells of the central nervous system, are critically involved. Our lab has shown that spinal microglia were key in controlling chronic pain state in IBD. Using the Dextran Sodium Sulfate (DSS) model of colitis, we found that microglial G-CSF was able to sensitize colonic nociceptors that express the pain receptor TRPV1. While TRPV1+ nociceptors have been implicated in peripheral sensitization, their contribution to central sensitization via microglia remains unknown. Aims To investigate the role of TRPV1+ visceral afferents in microglial activation and chronic visceral pain. Methods We generated DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice in which TRPV1 sensory neurons can be inhibited (TRPV1-hM4Di) or activated (TRPV1-hM3Dq) in a time and tissue specific manner using the inert ligand Clozapine-N-Oxide (CNO). To test the inhibition of TRPV1 neurons in DSS-induced colitis, TRPV1-hM4Di mice were treated with DSS 2.5% or water for 7 days and received vehicle or CNO i.p. injection twice daily. To activate TRPV1 visceral afferents, TRPV1-hM3Dq mice received vehicle or CNO daily for 7 days, by oral gavage. After 7 days of treatment, visceral pain was evaluated by colorectal distension and spinal cords tissues were harvested to measure microglial activation. Results Our data validated the nociceptor specific expression and function of the DREADD in TRPV1-Cre mice. Inhibition of TRPV1 visceral afferents in DSS TRPV1-hM4Di mice was able to prevent the colitis-induced microglial activation and thus reduce visceral hypersensitivity. In contrast, activation of TRPV1 visceral afferents in TRPV1-hM3Dq mice was sufficient to drive microglial activation in the absence of colitis. Analysis of the proalgesic mediators derived from activated TRPV1-hM3Dq neurons identified ATP as a key factor of microglial activation. Conclusions Overall, these data provide novel insights into the mechanistic understanding of the gut/brain axis in chronic visceral pain and suggest a role of purinergic signaling that could be harnessed for testing effective therapeutic approaches to relieve pain in IBD patients. Funding Agencies CCCACHRI (Alberta Children’s Hospital Research Institute) and CSM (Cumming School of Medicine) postdoctoral fellowship


Sign in / Sign up

Export Citation Format

Share Document