Subsurface solute transport with one-, two-, and three-dimensional arbitrary shape sources

2016 ◽  
Vol 190 ◽  
pp. 44-57 ◽  
Author(s):  
Kewei Chen ◽  
Hongbin Zhan ◽  
Renjie Zhou
Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2233 ◽  
Author(s):  
Sbai

A new surrogate-assisted optimization formulation for groundwater remediation design was developed. A stationary Eulerian travel time model was used in lieu of a conservative solute transport model. The decision variables of the management model are well locations and their flow rates. The objective function adjusts the residence time distribution between all pairs of injection-production wells in the remediation system. This goal is achieved by using the Lorenz coefficient as an effective metric to rank the relative efficiency of many remediation policies. A discrete adjoint solver was developed to provide the sensitivity of the objective function with respect to changes in decision variables. The quality management model was checked with simple solutions and then applied to hypothetical two- and three-dimensional test problems. The performance of the simulation-optimization approach was evaluated by comparing the initial and optimal remediation designs using an advective-dispersive solute transport simulator. This study shows that optimal designs simultaneously delay solute transport breakthrough at pumping wells and improve the sweep efficiency leading to smaller cleanup times. Well placement optimization in heterogeneous porous media was found to be more important than well rate optimization. Additionally, optimal designs based on two-dimensional models were found to be more optimistic suggesting a direct use of three-dimensional models in a simulation-optimization framework. The computational budget was drastically reduced because the proposed surrogate-based quality management model is generally cheaper than one single solute transport simulation. The introduced model could be used as a fast, but first-order, approximation method to estimate pump-and-treat capital remediation costs. The results show that physically based low-fidelity surrogate models are promising computational approaches to harness the power of quality management models for complex applications with practical relevance.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Min Wang ◽  
Qifeng Guo ◽  
Pengfei Shan ◽  
Meifeng Cai ◽  
Fenhua Ren ◽  
...  

The effects of roughness and normal stress on hydraulic properties of fractures are significant during the coupled shear flow test. Knowing the laws of fluid flow and solute transport in fractures is essential to ensure the nature and safety of geological projects. Although many experiments and numerical simulations of coupled shear flow test have been conducted, there is still a lack of research on using the full Navier-Stokes (N-S) equation to solve the real flow characteristics of fluid in three-dimensional rough fractures. The main purpose of this paper is to study the influence of roughness and normal stress on the fluid flow and solute transport through fractures under the constant normal stiffness boundary condition. Based on the corrected successive random addition (SRA) algorithm, fracture surfaces with different roughness expressed by the Hurst coefficient ( H ) were generated. By applying a shear displacement of 5 mm, the sheared fracture models with normal stresses of 1 MPa, 3 MPa, and 5 MPa were obtained, respectively. The hydraulic characteristics of three-dimensional fractures were analyzed by solving the full N-S equation. The particle tracking method was employed to obtain the breakthrough curves based on the calculated flow field. The numerical method was verified with experimental results. It has been found that, for the same normal stress, the smaller the fracture H value is (i.e., more tough the fracture is), the larger the mechanical aperture is. The ratio of hydraulic aperture to mechanical aperture ( e h / e m ) decreases with the increasing of normal stress. The smaller the H value, the effect of the normal stress on the ratio e h / e m is more significant. The variation of transmissivity of fractures with the flow rate exhibits similar manner with that of e h / e m . With the normal stress and H value increasing, the mean velocity of particles becomes higher and more particles move to the outlet boundary. The dispersive transport behavior becomes obvious when normal stress is larger.


2020 ◽  
Vol 27 (31) ◽  
pp. 38974-38986 ◽  
Author(s):  
Xu Li ◽  
Zhang Wen ◽  
Qi Zhu ◽  
Hamza Jakada

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xingwei Wang ◽  
Jiajun Chen ◽  
Hao Wang ◽  
Jianfei Liu

Due to the uneven distribution of pollutions and blur edge of pollutant area, there will exist uncertainty of source term shape in advective-diffusion equation model of contaminant transport. How to generalize those irregular source terms and deal with those uncertainties is very critical but rarely studied in previous research. In this study, the fate and transport of contaminant from rectangular and elliptic source geometry were simulated based on a three-dimensional analytical solute transport model, and the source geometry generalization guideline was developed by comparing the migration of contaminant. The result indicated that the variation of source area size had no effect on pollution plume migration when the plume migrated as far as five times of source side length. The migration of pollution plume became slower with the increase of aquifer thickness. The contaminant concentration was decreasing with scale factor rising, and the differences among various scale factors became smaller with the distance to field increasing.


Sign in / Sign up

Export Citation Format

Share Document