scholarly journals Attachment, re-mobilization, and inactivation of bacteriophage MS2 during bank filtration following simulation of a high virus load and an extreme rain event

Author(s):  
He Wang ◽  
Judith Kaletta ◽  
Sigrid Kaschuba ◽  
Sondra Klitzke ◽  
Ingrid Chorus ◽  
...  
2019 ◽  
Vol 146 (726) ◽  
pp. 86-104
Author(s):  
Florent Beucher ◽  
Jean‐Philippe Lafore ◽  
Nicolas Chapelon
Keyword(s):  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Zachery R. Staley ◽  
Jun Dennis Chuong ◽  
Stephen J. Hill ◽  
Josey Grabuski ◽  
Shadi Shokralla ◽  
...  

2013 ◽  
Vol 11 (4) ◽  
pp. 636-646 ◽  
Author(s):  
S. T. Andersen ◽  
A. C. Erichsen ◽  
O. Mark ◽  
H.-J. Albrechtsen

Quantitative microbial risk assessments (QMRAs) often lack data on water quality leading to great uncertainty in the QMRA because of the many assumptions. The quantity of waste water contamination was estimated and included in a QMRA on an extreme rain event leading to combined sewer overflow (CSO) to bathing water where an ironman competition later took place. Two dynamic models, (1) a drainage model and (2) a 3D hydrodynamic model, estimated the dilution of waste water from source to recipient. The drainage model estimated that 2.6% of waste water was left in the system before CSO and the hydrodynamic model estimated that 4.8% of the recipient bathing water came from the CSO, so on average there was 0.13% of waste water in the bathing water during the ironman competition. The total estimated incidence rate from a conservative estimate of the pathogenic load of five reference pathogens was 42%, comparable to 55% in an epidemiological study of the case. The combination of applying dynamic models and exposure data led to an improved QMRA that included an estimate of the dilution factor. This approach has not been described previously.


1998 ◽  
Vol 126 (6) ◽  
pp. 1608-1629 ◽  
Author(s):  
Noel E. Davidson ◽  
Kazuo Kurihara ◽  
Teruyuki Kato ◽  
Graham Mills ◽  
Kamal Puri
Keyword(s):  

2012 ◽  
Vol 15 (4) ◽  
pp. 295-299 ◽  
Author(s):  
Marina L Meli ◽  
Paul Burr ◽  
Nicola Decaro ◽  
Elizabeth Graham ◽  
Oswald Jarrett ◽  
...  

2005 ◽  
Vol 79 (16) ◽  
pp. 10627-10637 ◽  
Author(s):  
Kathryn M. Kitrinos ◽  
Julie A. E. Nelson ◽  
Wolfgang Resch ◽  
Ronald Swanstrom

ABSTRACT The initiation of drug therapy or the addition of a new drug to preexisting therapy can have a significant impact on human immunodeficiency virus type 1 (HIV-1) populations within a person. Drug therapy directed at reverse transcriptase and protease can result in dramatic decreases in virus load, causing a contraction in the virus population that represents a potential genetic bottleneck as a subset of virus with genomes carrying resistance mutations repopulate the host. While this bottleneck exerts an effect directly on the region that is being targeted by the drugs, it also affects other regions of the viral genome. We have applied heteroduplex tracking assays (HTA) specific to variable regions 1 and 2 (V1/V2) and variable region 3 (V3) of the HIV-1 env gene to analyze the effect of a genetic bottleneck created by the selection of resistance to ritonavir, a protease inhibitor. Subjects were classified into groups on the basis of the extent of the initial drop in virus load and the duration of virus load reduction. Subjects with a strong initial drop in virus load exhibited a loss of heterogeneity in the env region at virus load rebound; in contrast, subjects with a weak initial drop in virus load exhibited little to no loss of heterogeneity at virus load rebound in either region of env examined. The duration of virus load reduction also affected env populations. Subjects that had prolonged reductions exhibited slower population diversification and the appearance of new V1/V2 species after rebound. The longer reduction of virus load in these subjects may have allowed for improved immune system function, which in turn could have selected for new escape mutants. Subjects with rapid rebound quickly reequilibrated the entry env variants back into the resistant population. When the pro gene developed further resistance mutations subsequent to virus load rebound, no changes were observed in V1/V2 or V3 populations, suggesting that the high virus loads allowed the env populations to reequilibrate rapidly. The rapid equilibration of env variants during pro gene sequence transitions at high virus load suggests that recombination is active in defining the HIV-1 sequence population. Conversely, part of the success of suppressive antiviral therapy may be to limit the potential for evolution through recombination, which requires dually infected cells.


Sign in / Sign up

Export Citation Format

Share Document