extreme rain
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 15)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
He Wang ◽  
Judith Kaletta ◽  
Sigrid Kaschuba ◽  
Sondra Klitzke ◽  
Ingrid Chorus ◽  
...  


2021 ◽  
Vol 893 (1) ◽  
pp. 012012
Author(s):  
R C H Hutauruk ◽  
T Amin ◽  
A M Irawan

Abstract This research discusses the effect of climate change on extreme rainfall in West Java using the RCP 4.5 and RCP 8.5 scenarios by comparing daily rainfall data with model ACCESS-1, CSIROMK3.6 model, MIROC-5 from NASA Earth Exchange Global Daily Downscaled Projection (NEX-GDDP) and the ensemble of three models each season with Extreme Dependency Score (EDS) method. This study projects an extreme rainfall index of 30 years (2011-2040). The three extreme rainfall indices issued by the Expert Detection Team and the Climate Change Index (ETCCDI) consisted of Rx1day, R50mm, and R95p used in this study. The results showed that the projection period (2011-2040) used RCP 8.5 which had a trend of increasing extreme rain index that was greater than RCP 4.5. For RCP 8.5 the maximum rainfall will increase in Indramayu, Majalengka, Purwakarta, Sukabumi and Ciamis areas. Increased rainy days occurred in Bogor, Bekasi, Karawang, Purwakarta, Bandung, Sumedang, Majalengka, Cirebon, Indramayu. Extreme rainfall will increase in Bekasi, Karawang and Bogor regions.



Author(s):  
Benali Benzater ◽  
Abdelkader Elouissi ◽  
Ismail Dabanli ◽  
Samra Harkat ◽  
Abderrahmane Hamimed
Keyword(s):  


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1252
Author(s):  
Jie Zhang ◽  
Yinglai Jia ◽  
Rui Ji ◽  
Yifei Wu

The North Atlantic tripole (NAT) is the leading mode of sea-surface temperature (SST) in the decadal time scale. Although the NAT is forced by North Atlantic oscillation (NAO), it also has an effect on the atmosphere; for example, the early winter tripole SST signal can influence storm tracks in March. As the NAT not only changes the baroclinicity of the lower layer but also modifies the moisture being released into the atmosphere, we surmise that the NAT has an impact on moisture transport and atmospheric rivers in the decadal time scale. Using ERA5 reanalysis data, the decadal variations in Atmospheric Rivers (ARs) in the North Atlantic in boral winter in relation to NAT phases were studied. During the positive NAT phase, the positive SST in the central and western North Atlantic increases the humidity and causes an anticyclonic wind response, which enhances the northeastward transport of moisture. As a result, ARs tend to be longer and transport more moisture toward northwestern Europe. This causes enhanced extreme rain in the UK and Norway. During the negative NAT phase, the positive SST anomalies in the south and east of the North Atlantic provide more moisture, induce a southward shift of the ARs and enhance extreme rain in the Iberian Peninsula. The Gulf Stream (GS) front is stronger during the negative NAT phase, increasing the frequency of the atmospheric front and enlarging the rain rate in ARs.



2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Estri Diniyati ◽  
Yosafat Donni Haryanto

Abstract—Indonesia located in the equatorial region which has potential to have a major impact on atmospheric physical conditions during extreme weather events such as the Mesoscale Convective Complex (MCC). MCC is a phenomenon that was first discovered by (Maddox, 1980) where this phenomenon is characterized by the presence of a quasi-circular (almost circular) cloud shield with an eccentricity of 0.7 with a cloud cover area of 100,000 km², the cloud core area covers 50,000 km² and cloud top temperature IR1 -52 ℃. These cloud conditions last for a minimum of 6 hours and cause severe weather and extreme rain. This study aims to identify the MCC phenomenon in the Karimata Strait on 19-20 September 2020 which caused heavy rains in parts of the West coast of Kalimantan and Bangka Island using Himawari-8 Satellite imagery data and the MATLAB application. The results showed that on September 19, MCC was identified at 09.00-19.00 UTC, then on September 20, MCC was identified at 16.00-23.00 UTC. At the time of the MCC event, Bangka and Pontianak regions experienced extreme rains recorded on AWS Digi Stamet Pontianak with rainfall reaching 43.4 mm/hour and ARG Lubuk Besar Bangka Tengah with rainfall reaching 16.8 mm/hour. Keywords: mesoscale convective complex (MCC), himawari-8, MATLAB Abstrak—Indonesia merupakan negara yang terletak diwilayah ekuator dimana berpotensi memiliki dampak besar terhadap kondisi fisik atmosfer saat terjadi cuaca ekstrem seperti Mesoscale Convective Complex (MCC). MCC merupakan fenomena yang pertama kali ditemukan oleh (Maddox, 1980) dimana fenomena ini dicirikan dengan adanya perisai awan yang berbentuk quasi circular (hampir lingkaran) dengan eksentrisitas ≥ 0,7 dengan luas area selimut awan ≥ 100.000 km² , luas area inti awan mencakup ≥ 50.000 km² serta suhu puncak awan IR1 ≤ -52 ℃. Kondisi awan tersebut bertahan minimun selama 6 jam dan menyebabkan cuaca buruk dan hujan ekstrem. Penelitian ini bertujuan untuk mengidentifikasi fenomena MCC di Selat Karimata pada Tanggal 19-20 September 2020 yang menyebabkan hujan lebat di sebagian wilayah Kalimantan bagian pesisir Barat dan Pulau Bangka menggunakan data citra Satelit Himawari-8 dan aplikasi MATLAB. Hasil penelitian menunjukkan pada tanggal 19 September, MCC teridentifikasi pada pukul 09.00-19.00 UTC selanjutnya tanggal 20 September 2020 MCC teridentifikasi pada pukul 16.00-23.00 UTC. Pada saat peristiwa MCC, wilayah Bangka dan Pontianak mengalami hujan ekstrem yang tercatat pada AWS Digi Stasiun Meteorologi Pontianak dengan curah hujan mencapai 43,4 mm/jam dan ARG Lubuk Besar Bangka Tengah dengan curah hujan mencapai 16,8 mm/jam. Kata kunci: mesoscale convective complex (MCC), himawari-8, MATLAB



Author(s):  
С.Н. Волков ◽  
А.И. Житенев ◽  
О.Н. Рублевская ◽  
Ю.А. Курганов ◽  
И.Г. Костенко ◽  
...  

Анализ официальных источников информации показывает, что распределение экстремальных дождей по территории происходит с учетом микроклиматических особенностей ее местности. Для оценки степени достоверности таких закономерностей в пределах мегаполисов проведены экспериментальные исследования, в которых в качестве экспериментальной базы принята система водоотведения Санкт-Петербурга, в качестве средств измерения – сеть из 34 автоматических осадкомеров, осуществляющих записи с интервалом 5 минут, в качестве экспериментальной информации – база данных результатов измерений в течение шести лет. В результате исследований установлено, что в городской среде формируется микроклимат, отличающийся от климата за ее пределами. Кроме того, в масштабах мегаполисов имеются микроклиматические зоны, в которых зависимости интенсивностей осадков от их повторяемости могут существенно отличаться. При этом отличия начинают проявляться при периодах р однократного превышения расчетной интенсивности дождей от 1,5–2 лет, а при их меньших значениях отличия не выявлены. Полученный результат согласуется с данными исследований других авторов, экспериментально установивших, что количество экстремальных дождей увеличивается в тех районах мегаполисов, как правило, исторических,в которых меньше зеленых насаждений и, соответственно, более высокая степень перегрева поверхности в летнее время. The analysis of official data resources shows that the distribution of extreme rainfall over the territory is carried out with account of the microclimatic features of the area. To estimate the degree of reliability of such patterns within megalopolises, experimental studies were carried out, where the wastewater disposal system of St. Petersburg was assumed as an experimental base; a network of 34 automatic rain gauges recording with an interval of 5 minutes was assumed as a measuring instrument, and a base was used as experimental information, i. e., a measurement data base for six years. As a result of the research, it has been established that a microclimate is formed in the urban environment that differs from the climate outside it. Besides, on a megacity scale, there are microclimatic zones where the dependences of precipitation intensities on their frequency can differ significantly. In this case, the differences begin to manifest at periods p of one-time excess of the calculated rainfall intensity from 1.5–2 years, whereas at lower values, no differences have been found. The result obtained is consistent with the research data obtained by other authors, who experimentally established that the amount of extreme rainfall increased in those areas of megacities, as a rule, historical ones, where fewer green spaces are located, and, accordingly, a higher degree of surface overheating in summer is recorded.



Ecography ◽  
2021 ◽  
Author(s):  
Alison J. O'Donnell ◽  
Michael Renton ◽  
Kathryn J. Allen ◽  
Pauline F. Grierson


2021 ◽  
Vol 149 (5) ◽  
pp. 1381-1401
Author(s):  
Beata Latos ◽  
Thierry Lefort ◽  
Maria K. Flatau ◽  
Piotr J. Flatau ◽  
Donaldi S. Permana ◽  
...  

AbstractOn the basis of detailed analysis of a case study and long-term climatology, it is shown that equatorial waves and their interactions serve as precursors for extreme rain and flood events in the central Maritime Continent region of southwest Sulawesi, Indonesia. Meteorological conditions on 22 January 2019 leading to heavy rainfall and devastating flooding in this area are studied. It is shown that a convectively coupled Kelvin wave (CCKW) and a convectively coupled equatorial Rossby wave (CCERW) embedded within the larger-scale envelope of the Madden–Julian oscillation (MJO) enhanced convective phase, contributed to the onset of a mesoscale convective system that developed over the Java Sea. Low-level convergence from the CCKW forced mesoscale convective organization and orographic ascent of moist air over the slopes of southwest Sulawesi. Climatological analysis shows that 92% of December–February floods and 76% of extreme rain events in this region were immediately preceded by positive low-level westerly wind anomalies. It is estimated that both CCKWs and CCERWs propagating over Sulawesi double the chance of floods and extreme rain event development, while the probability of such hazardous events occurring during their combined activity is 8 times greater than on a random day. While the MJO is a key component shaping tropical atmospheric variability, it is shown that its usefulness as a single factor for extreme weather-driven hazard prediction is limited.



2021 ◽  
Author(s):  
Beata Latos ◽  
Thierry Lefort ◽  
Maria K. Flatau ◽  
Piotr J. Flatau ◽  
Dariusz B. Baranowski ◽  
...  

<p>Monitoring of equatorial wave activity and understanding their nature is of high priority for scientists, weather forecasters and policy makers because these waves and their interactions can serve as precursors for weather-driven natural hazards, such as extreme rain and flood events. We studied such precursors of the January 2019 heavy rain and deadly flood in the central Maritime Continent region of southwest Sulawesi, Indonesia. It is shown that a convectively coupled Kelvin wave (CCKW) and a convectively coupled equatorial Rossby wave (CCERW) embedded within the larger-scale envelope of the Madden-Julian Oscillation (MJO), contributed to the onset of a mesoscale convective system. The latest developed over the Java Sea and propagated onshore, resulting in extreme rain and devastating flood. </p><p>For the analysis of the January 2019 flood, we explored large datasets and detected interesting features to find multivariate relationships through visualization. We used SpectralWeather – a new tool supporting tropical weather training, research and forecasting, easily accessible at https://www.spectralweather.com. Extending Cameron Beccario's earth.nullschool.net project, SpectralWeather focuses on spectral decomposition of meteorological and oceanic fields into equatorial waves – CCKW, MJO, CCERW and Mixed Rossby-Gravity waves. SpectralWeather uses ECMWF ERA5 reanalysis at several levels, NASA GPM rainfall datasets, OMI OLR index, NEMO SST, AVISO sea surface height, and OSCAR currents.</p><p>This new visualization tool can help to quantify and understand factors triggering natural hazards in the global tropics. We will discuss its interface and available features, based on the example of the January 2019 Sulawesi flood and other flood and extreme rain events in the Maritime Continent.   </p>



2021 ◽  
Author(s):  
Joana Postal Pasqualini ◽  
Jucimara Andreza Rigotti ◽  
Lucia Ribeiro Rodrigues

<p>Constructed Floating Wetland (CFW) has shown a high capacity to transform, recycle, retain and remove different types of pollutants, especially nutrients. A CFW was developed in mesocosms at the Institute of Hydraulic Research at the Federal University of Rio Grande do Sul, Brazil, in order to evaluate the functionality of the system on treating synthetic effluent with nutrient concentrations simulating urban surface runoff. Two species of emergent macrophytes, <em>Typha domingensis Pers.</em> and <em>Schoenoplectus californicus </em> were employed. The CFW was evaluated under changes in nutrient concentration and water level during two subsequent experiments, identified as “shock load” in order to simulate extreme rain events, accidental spills of pollutants or illegal discharges that are common in drainage systems and urban rivers worldwide. Comparative evaluations between species and the system responses were evaluated in different hydraulic retention time (HRT). The system was exposed to 24 h of HRT, with 20 cm of water level and 1.8 mg/L of TP, 4.9 mg/L of TN (mean concentration). After sampling, the tanks were filled to 40 cm, with 3.0 mg/L of TP and 13.8 mg/L of TN concentration . Samples were collected within 2 and 4 h to quantify the system's response to shock-load. After sampling, the level was reduced to 20 cm, followed by exposure for the remaining 6 days, when final samples were collected. Temperature, conductivity, dissolved oxygen and redox potential were measured <em>in situ</em>. Turbidity, color and pH was measured immediately after collection in the laboratory. Total phosphorus (TP), orthophosphate (PO<sub>4</sub><sup>3-</sup>), total nitrogen (TN), total organic carbon (TOC), chlorophyll-a and pheophytin were also quantified. Only orthophosphate presented significant differences between initial and final concentrations, after the first 24h (<em>F = </em>6.106<em>, df = </em>1<em>, p = </em>0.024). The shock load demonstrated significant differences between initial and final concentrations for TN (<em>F = </em>10.097<em>, df = </em>1<em>, p = </em>0.005), for TP (<em>F = </em>9.392<em>, df = </em>1<em>, p = </em>0.0067) and for TOC (<em>F = </em>9.817<em>, df  = </em>1<em>, p = </em>0.005). As to final batch, significant differences between input shock load and output values were found for TN (<em>F = </em>103.45<em>, df = </em>1<em>, p < </em>0.001), for TP (<em>F = </em>7.584<em>, df = </em>1<em>, p = </em>0.0067), for PO<sub>4</sub><sup>3-</sup> (<em>F = </em>6.864<em>, df = </em>1<em>, p = </em>0.017) and for TOC (<em>F = </em>73.608<em>, df = </em>1<em>, p < 0.001</em>). After 6 days, average removal rates for TN were about 28% for <em>S. californicus</em> and 87% for <em>T. domingensis</em>, for TP such removals were 29% and 55%, respectively. <em>T. domingensis</em> superior root development in association with the biofilm in the rhizosphere of the plants, were responsible for the best efficiency. The results show evidence of the benefits related to the ecosystem service associated with the CFW built in mesocosms. The understanding of the performance of compensatory techniques in controlled situations represents an indispensable tool for the knowledge of the limitations and the consequent technical improvement necessary for the feasibility of implementing nature-based solutions as the CFW. </p>



Sign in / Sign up

Export Citation Format

Share Document