Zinc phthalocyanine-soybean phospholipid complex based drug carrier for switchable photoacoustic/fluorescence image, multiphase photothermal/photodynamic treatment and synergetic therapy

2018 ◽  
Vol 284 ◽  
pp. 1-14 ◽  
Author(s):  
Jinyuan Ma ◽  
Dengyue Chen ◽  
Yang Li ◽  
Yilin Chen ◽  
Qiuhong Liu ◽  
...  
Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 955 ◽  
Author(s):  
Korneev ◽  
Kurskaya ◽  
Sharshov ◽  
Eastwood ◽  
Strakhovskaya

Ultrastructural studies revealing morphological differences between intact and photodynamically inactivated virions can point to inactivation mechanisms and molecular targets. Using influenza as a model system, we show that photodynamic virus inactivation is possible without total virion destruction. Indeed, irradiation with a relatively low concentration of the photosensitizer (octacationic octakis(cholinyl) zinc phthalocyanine) inactivated viral particles (the virus titer was determined in Madin Darby Canine Kidney (MDCK) cells) but did not destroy them. Transmission electron microscopy (TEM) revealed that virion membranes kept structural integrity but lost their surface glycoproteins. Such structures are known as “bald” virions, which were first described as a result of protease treatment. At a higher photosensitizer concentration, the lipid membranes were also destroyed. Therefore, photodynamic inactivation of influenza virus initially results from surface protein removal, followed by complete virion destruction. This study suggests that photodynamic treatment can be used to manufacture “bald” virions for experimental purposes. Photodynamic inactivation is based on the production of reactive oxygen species which attack and destroy biomolecules. Thus, the results of this study can potentially apply to other enveloped viruses and sources of singlet oxygen.


2017 ◽  
Vol 50 (3) ◽  
pp. 953-963 ◽  
Author(s):  
Weronika Kuzyniak ◽  
Jacob Schmidt ◽  
Wojciech Glac ◽  
Janine Berkholz ◽  
Gustav Steinemann ◽  
...  

1995 ◽  
Vol 73 (04) ◽  
pp. 668-674 ◽  
Author(s):  
L Vijaya Mohan Rao ◽  
An D Hoang ◽  
Samuel I Rapaport

SummaryLupus anticoagulant (LA) IgGs have been reported to inhibit more effectively and consistently the Xa/Va/phospholipid complex-catalyzed activation of human prothrombin than the Xa/Va/phospholipid complex-catalyzed activation of bovine prothrombin. This led us to carry out studies to determine whether the ability to inhibit the activation of prothrombin of LA IgGs, separated from the plasma of 15 patients by protein A affinity chromatography, could be related to the ability of the LA IgGs to bind to prothrombin under various experimental conditions. Of 14 LA IgG preparations tested all prolonged to a variable but substantial extent the dilute Russell’s viper venom time (dRVVT) of human plasma but only minimally prolonged the dRVVT of bovine plasma. In a purified prothrombin activation system with a rate limiting concentration of phospholipid, all 15 LA IgG preparations inhibited the activation of human prothrombin with the majority showing >50% of inhibition. In contrast, only one LA IgG markedly inhibited (>50%) the activation of bovine prothrombin and five others moderately inhibited (25-40%) the activation of bovine prothrombin. Nevertheless, the majority of LA IgG preparations bound to immobilized bovine prothrombin on a Western blot and also to immobilized bovine prothrombin on a microtiter well. In an ELISA in which phosphatidylserine (PS) was immobilized on microtiter wells, bovine prothrombin supported the binding of 10 of 15 LA IgG preparations to PS. However, the extent of binding was lower than that observed with human prothrombin. In experiments with 125I-human prothrombin or 125I-bovine prothrombin in a solution containing Ca2+, the addition of PS/PC vesicles enhanced the binding of both human and bovine prothrombin to some LA IgG preparations. The enhanced binding was particularly evident for bovine prothrombin. Although seemingly related for some preparations, the ability of a LA IgG to bind to bovine prothrombin, either in the presence or absence of PS, and the ability of that LA IgG to inhibit the activation of bovine prothrombin was not consistently related for all preparations.


2016 ◽  
Vol 2 (2) ◽  
pp. 91-95
Author(s):  
Neelima Rani T ◽  
Pavani A ◽  
Sobhita Rani P ◽  
Srilakshmi N

This study aims to formulate solid dispersions (SDs) of Simvastatin (SIM) to improve the aqueous solubility, dissolution rate and to facilitate faster onset of action. Simvastatin is a BCS class II drug having low solubility & therefore low oral bioavailability. In the present study, SDs of simvastatin different drug-carrier ratios were prepared by kneading method. The results showed that simvastatin solubility & dissolution rate enhanced with polymer SSG in the ratio 1:7 due to increase in wetting property or possibly may be due to change in crystallinity of the drug.


2012 ◽  
Vol 8 (1) ◽  
pp. 63
Author(s):  
Carlo Zivelonghi ◽  
Giulia Geremia ◽  
Michele Pighi ◽  
Flavio Ribichini ◽  
◽  
...  

Each component of a drug-eluting stent (DES) contributes to the safety of the device. Continuous efforts are being dedicated to the search of the optimal compromise between facility of use, safety and long-term efficacy. Shorter balloons reduce the vascular trauma beyond the stent struts; the metallic composition of the stent platform and the platform itself interact with the vascular wall in a long-lasting equilibrium between radial force, vessel patency and reparative cellular regrowth. The modality of drug elution is largely regulated by the chosen drug carrier, rather than by the chemical properties of the drug itself. Drug elution can be accomplished by permanent polymers that remain in the vessel wall forever, by biodegradable polymers that leave the naked metallic structure behind after their complete absorption, or even by direct release of the drug from stent reservoirs. The clinical performance of DESs has been exhaustively assessed in a large number of studies that have showed rapid and continuous improvements, from the first-generation DESs to the latest devices, based on substantial changes in stent design and polymer composition.


Sign in / Sign up

Export Citation Format

Share Document