A lattice Boltzmann model for multiphase flows with moving contact line and variable density

2018 ◽  
Vol 353 ◽  
pp. 26-45 ◽  
Author(s):  
Jizu Huang ◽  
Xiao-Ping Wang
2019 ◽  
Vol 30 (06) ◽  
pp. 1950044
Author(s):  
Weifeng Zhao

In this work, we propose a phase-field-based lattice Boltzmann method to simulate moving contact line (MCL) problems on curved boundaries. The key point of this method is to implement the boundary conditions on curved solid boundaries. Specifically, we use our recently proposed single-node scheme for the no-slip boundary condition and a new scheme is constructed to deal with the wetting boundary conditions (WBCs). In particular, three kinds of WBCs are implemented: two wetting conditions derived from the wall free energy and a characteristic MCL model based on geometry considerations. The method is validated with several MCL problems and numerical results show that the proposed method has utility for all the three WBCs on both straight and curved boundaries.


2014 ◽  
Vol 93 ◽  
pp. 1-17 ◽  
Author(s):  
Amir Banari ◽  
Christian Janßen ◽  
Stephan T. Grilli ◽  
Manfred Krafczyk

Author(s):  
Shi-Ming Li ◽  
Danesh K. Tafti

A mean-field free-energy lattice Boltzmann method (LBM) is applied to simulate moving contact line dynamics. It is found that the common bounceback boundary condition leads to an unphysical velocity at the solid wall in the presence of surface forces. The magnitude of the unphysical velocity is shown proportional to the local force term. The velocity-pressure boundary condition is generalized to solve the problem of the unphysical velocity. The simulation results are compared with three different theories for moving contact lines, including a hydrodynamic theory, a molecular kinetic theory, and a linear cosine law of moving contact angle versus capillary number. It is shown that the current LBM can be used to replace the three theories in handling moving contact line problems.


Sign in / Sign up

Export Citation Format

Share Document