Multidimensional approximate Riemann solvers for hyperbolic nonconservative systems. Applications to shallow water systems

2021 ◽  
pp. 110547
Author(s):  
Kleiton A. Schneider ◽  
José M. Gallardo ◽  
Dinshaw S. Balsara ◽  
Boniface Nkonga ◽  
Carlos Parés
2021 ◽  
Vol 88 (3) ◽  
Author(s):  
Alberto Prieto-Arranz ◽  
Luis Ramírez ◽  
Iván Couceiro ◽  
Ignasi Colominas ◽  
Xesús Nogueira

AbstractIn this work, a new discretization of the source term of the shallow water equations with non-flat bottom geometry is proposed to obtain a well-balanced scheme. A Smoothed Particle Hydrodynamics Arbitrary Lagrangian-Eulerian formulation based on Riemann solvers is presented to solve the SWE. Moving-Least Squares approximations are used to compute high-order reconstructions of the numerical fluxes and, stability is achieved using the a posteriori MOOD paradigm. Several benchmark 1D and 2D numerical problems are considered to test and validate the properties and behavior of the presented schemes.


2014 ◽  
Vol 270 ◽  
pp. 432-458 ◽  
Author(s):  
Kunal Puri ◽  
Prabhu Ramachandran

2018 ◽  
Vol 155 ◽  
pp. 227-239 ◽  
Author(s):  
D. Bellafiore ◽  
L. Zaggia ◽  
R. Broglia ◽  
C. Ferrarin ◽  
F. Barbariol ◽  
...  
Keyword(s):  

Author(s):  
Fatima-zahra Mihami ◽  
Volker Roeber

We present an efficient and robust numerical model for the solution of the Shallow Water Equations with the objective to develop the numerical foundation for an advanced free surface flow solver. The numerical solution is based on an explicit Finite Volume scheme on a staggered grid to ensure the conservation of mass and momentum across flow discontinuities and wet-dry transitions. This leads to an accurate numerical solution at low computational cost without the need for Riemann solvers. The efficiency of the lean numerical structure is further optimized through a CUDA-GPU implementation.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/xMnK_r7Tj1Q


2012 ◽  
Vol 12 (4) ◽  
pp. 1096-1120 ◽  
Author(s):  
Angelo L. Scandaliato ◽  
Meng-Sing Liou

AbstractIn this paper we demonstrate the accuracy and robustness of combining the advection upwind splitting method (AUSM), specifically AUSM+-UP, with high-order upwind-biased interpolation procedures, the weighted essentially non-oscillatory (WENO-JS) scheme and its variations, and the monotonicity preserving (MP) scheme, for solving the Euler equations. MP is found to be more effective than the three WENO variations studied. AUSM+-UP is also shown to be free of the so-called “carbuncle” phenomenon with the high-order interpolation. The characteristic variables are preferred for interpolation after comparing the results using primitive and conservative variables, even though they require additional matrix-vector operations. Results using the Roe flux with an entropy fix and the Lax-Friedrichs approximate Riemann solvers are also included for comparison. In addition, four reflective boundary condition implementations are compared for their effects on residual convergence and solution accuracy. Finally, a measure for quantifying the efficiency of obtaining high order solutions is proposed; the measure reveals that a maximum return is reached after which no improvement in accuracy is possible for a given grid size.


Sign in / Sign up

Export Citation Format

Share Document