A numerical method for self-similar solutions of the ideal magnetohydrodynamics

2021 ◽  
pp. 110690
Author(s):  
Fang Chen ◽  
Ravi Samtaney
2021 ◽  
pp. 43-54
Author(s):  
A. N. Krutov ◽  
◽  
S. Ya. Shkol’nikov ◽  

The mathematical model of kinematic wave, that is widely used in hydrological calculations, is generalized to compute processes in deformable channels. Self-similar solutions to the kinematic wave equations, namely, the discontinuous wave of increase and the “simple” wave of decrease are generalized. A numerical method is proposed for solving the kinematic wave equations for deformable channels. The comparison of calculation results with self-similar solutions revealed a good agreement.


2002 ◽  
Vol 20 (2) ◽  
pp. 263-268 ◽  
Author(s):  
X. FLEURY ◽  
S. BOUQUET ◽  
C. STEHLÉ ◽  
M. KOENIG ◽  
D. BATANI ◽  
...  

In this article, we present a laboratory astrophysics experiment on radiative shocks and its interpretation using simple modelization. The experiment is performed with a 100-J laser (pulse duration of about 0.5 ns) which irradiates a 1-mm3 xenon gas-filled cell. Descriptions of both the experiment and the associated diagnostics are given. The apparition of a radiation precursor in the unshocked material is evidenced from interferometry diagrams. A model including self-similar solutions and numerical ones is derived and fairly good agreements are obtained between the theoretical and the experimental results.


Sign in / Sign up

Export Citation Format

Share Document