curve shortening
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 1)

AppliedMath ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 16-38
Author(s):  
Theodore P. Hill

This article introduces a new stochastic non-isotropic frictional abrasion model, in the form of a single short partial integro-differential equation, to show how frictional abrasion alone of a stone on a planar beach might lead to the oval shapes observed empirically. The underlying idea in this theory is the intuitive observation that the rate of ablation at a point on the surface of the stone is proportional to the product of the curvature of the stone at that point and the likelihood the stone is in contact with the beach at that point. Specifically, key roles in this new model are played by both the random wave process and the global (non-local) shape of the stone, i.e., its shape away from the point of contact with the beach. The underlying physical mechanism for this process is the conversion of energy from the wave process into the potential energy of the stone. No closed-form or even asymptotic solution is known for the basic equation, which is both non-linear and non-local. On the other hand, preliminary numerical experiments are presented in both the deterministic continuous-time setting using standard curve-shortening algorithms and a stochastic discrete-time polyhedral-slicing setting using Monte Carlo simulation.


2022 ◽  
Vol 4 (3) ◽  
pp. 1-14
Author(s):  
Dong-Ho Tsai ◽  
◽  
Xiao-Liu Wang ◽  

<abstract><p>With the help of heat equation, we first construct an example of a graphical solution to the curve shortening flow. This solution $ y\left(x, t\right) \ $has the interesting property that it converges to a log-periodic function of the form</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ A\sin \left( \log t\right) +B\cos \left( \log t\right) $\end{document} </tex-math></disp-formula></p> <p>as$ \ t\rightarrow \infty, \ $where $ A, \ B $ are constants. Moreover, for any two numbers $ \alpha &lt; \beta, \ $we are also able to construct a solution satisfying the oscillation limits</p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \liminf\limits_{t\rightarrow \infty}y\left( x,t\right) = \alpha,\ \ \ \limsup\limits _{t\rightarrow \infty}y\left( x,t\right) = \beta,\ \ \ x\in K $\end{document} </tex-math></disp-formula></p> <p>on any compact subset$ \ K\subset \mathbb{R}. $</p></abstract>


Author(s):  
Friederike Dittberner

AbstractWe consider embedded, smooth curves in the plane which are either closed or asymptotic to two lines. We study their behaviour under curve shortening flow with a global forcing term. We prove an analogue to Huisken’s distance comparison principle for curve shortening flow for initial curves whose local total curvature does not lie below $$-\pi $$ - π and show that this condition is sharp. With that, we can exclude singularities in finite time for bounded forcing terms. For immortal flows of closed curves whose forcing terms provide non-vanishing enclosed area and bounded length, we show convexity in finite time and smooth and exponential convergence to a circle. In particular, all of the above holds for the area preserving curve shortening flow.


Author(s):  
Douglas Stryker ◽  
Ao Sun

Motivated by the limiting behavior of an explicit class of compact ancient curve shortening flows, by adapting the work of Colding–Minicozzi [11], we prove codimension bounds for ancient mean curvature flows by their tangent flow at [Formula: see text]. In the case of the [Formula: see text]-covered circle, we apply this bound to prove a strong rigidity theorem. Furthermore, we extend this paradigm by showing that under the assumption of sufficiently rapid convergence, a compact ancient mean curvature flow is identical to its tangent flow at [Formula: see text].


Author(s):  
Na Yuan ◽  
Peihui Wang ◽  
Wenlong Meng ◽  
Shuang-Min Chen ◽  
Jian Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document