Multiphysics simulation and characterisation of parboiling of long grain rice during hydration

2021 ◽  
pp. 103391
Author(s):  
Thaisa Carvalho Volpe Balbinoti ◽  
Luiz Mário de Matos Jorge ◽  
Charles Windson Isidoro Haminiuk ◽  
Regina Maria Matos Jorge
AIAA Journal ◽  
2016 ◽  
Vol 54 (3) ◽  
pp. 828-846 ◽  
Author(s):  
Thomas D. Economon ◽  
Francisco Palacios ◽  
Sean R. Copeland ◽  
Trent W. Lukaczyk ◽  
Juan J. Alonso

2015 ◽  
Vol 727-728 ◽  
pp. 607-611 ◽  
Author(s):  
Kshitij Chopra ◽  
Kritika Nigam ◽  
Sujata Pandey

This paper analyses the behaviour ofpiezoelectric transducer for harvesting energy. The transducer was designedusing different materials for harnessing energy that include Zinc Oxide, LeadZirconate Titanate (PZT-2) and Quartz. The transducer was simulated using thesematerials and the voltage generated from ambient vibrations was analysed. MEMsmodule of COMSOL Multiphysics Simulation software was used to perform thesimulations. Behaviour of different materials towards various frequencies madeknown in this study gives an opportunity to estimate the fabricated device and alsosheds light on prospective applications it fits.


Author(s):  
Patrick W. Wilkerson ◽  
Andrzej J. Przekwas ◽  
Chung-Lung Chen

Multiscale multiphysics simulations were performed to analyze wirebonds for power electronic devices. Modern power-electronic devices can be subjected to extreme electrical and thermal conditions. Fully coupled electro-thermo-mechanical simulations were performed utilizing CFDRC’s CFD-ACE+ multiphysics simulation software and scripting capabilities. Use of such integrated multiscale multiphysics simulation and design tools in the design process can cut cost, shorten product development cycle time, and result in optimal designs. The parametrically designed multiscale multiphysics simulations performed allowed for a streamlined parametric analysis of the electrical, thermal, and mechanical effects on the wirebond geometry, bonding sites and power electronic device geometry. Multiscale analysis allowed for full device thermo-mechanical analysis as well as detailed analysis of wirebond structures. The multiscale simulations were parametrically scripted allowing for parametric simulations of the device and wirebond geometry as well as all other simulation variables. Analysis of heat dissipation from heat generated in the power-electronic device and through Joule heating were analyzed. The multiphysics analysis allowed for investigation of the location and magnitude of stress concentrations in the wirebond and device. These stress concentrations are not only investigated for the deformed wirebond itself, but additionally at the wirebond bonding sites and contacts. Changes in the wirebond geometry and bonding geometry, easily changed through the parametrically designed simulation scripts, allows for investigation of various wirebond geometries and operating conditions.


Sign in / Sign up

Export Citation Format

Share Document