Strength and residual stress evaluation of stub columns fabricated from 800MPa high-strength steel

2014 ◽  
Vol 102 ◽  
pp. 111-120 ◽  
Author(s):  
Dae-Kyung Kim ◽  
Cheol-Ho Lee ◽  
Kyu-Hong Han ◽  
Jin-Ho Kim ◽  
Seung-Eun Lee ◽  
...  
2012 ◽  
Vol 24 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Cheol-Ho Lee ◽  
Dae-Kyung Kim ◽  
Kyu-Hong Han ◽  
Jin-Ho Kim ◽  
Seung-Eun Lee ◽  
...  

2014 ◽  
Vol 777 ◽  
pp. 249-254 ◽  
Author(s):  
Fidelis R. Mashiri ◽  
Anna M. Paradowska ◽  
Brian Uy ◽  
Zhong Tao ◽  
Mahbub Khan ◽  
...  

Engineers are increasingly encouraged to consider sustainability in the design and construction of new civil engineering infrastructure. Sustainability can be achieved through the use of high strength materials thereby reducing quantity of materials required in construction where possible. Knowledge of residual stresses in fabricated columns is important in identifying whether the fabricated columns can be classified as heavily welded (HW) or lightly welded (LW). The determination of residual stresses can be used to determine the local buckling of stub columns. Residual stress magnitudes are also essential in the numerical modelling of buckling behaviour of columns. This paper outlines the challenges in measurement of residual stresses using neutron diffraction in fabricated high strength steel square tubes. The residual stress line scans and maps were measured using the Kowari Strain Scanner located at the Australian Nuclear and Science Organisation (ANSTO) in Australia.


2020 ◽  
Vol 62 (9) ◽  
pp. 891-900
Author(s):  
Jonas Hensel ◽  
Arne Kromm ◽  
Thomas Nitschke-Pagel ◽  
Jonny Dixneit ◽  
Klaus Dilger

Abstract The use of low transformation temperature (LTT) filler materials represents a smart approach for increasing the fatigue strength of welded high strength steel structures apart from the usual procedures of post weld treatment. The main mechanism is based on the effect of the low start temperature of martensite formation on the stress already present during welding. Thus, compressive residual stress formed due to constrained volume expansion in connection with phase transformation become highly effective. Furthermore, the weld metal has a high hardness that can delay the formation of fatigue cracks but also leads to low toughness. Fundamental investigations on the weldability of an LTT filler material are presented in this work, including the characterization of the weld microstructure, its hardness, phase transformation temperature and mechanical properties. Special attention was applied to avoid imperfections in order to ensure a high weld quality for subsequent fatigue testing. Fatigue tests were conducted on the welded joints of the base materials S355J2 and S960QL using conventional filler materials as a comparison to the LTT filler. Butt joints were used with a variation in the weld type (DY-weld and V-weld). In addition, a component-like specimen (longitudinal stiffener) was investigated where the LTT filler material was applied as an additional layer. The joints were characterized with respect to residual stress, its stability during cyclic loading and microstructure. The results show that the application of LTT consumables leads to a significant increase in fatigue strength when basic design guidelines are followed. This enables a benefit from the lightweight design potential of high-strength steel grades.


Sign in / Sign up

Export Citation Format

Share Document