Effect of Thickness Reduction on Residual Stress and Microstructure Inhomogeneity of Radial Forged Ni-Cr-Mo High-Strength Steel Tube

Author(s):  
Weisheng Xu ◽  
Jinghan Yang ◽  
Pengfei Ji ◽  
Yong Lian ◽  
Jin Zhang
2020 ◽  
Vol 62 (9) ◽  
pp. 891-900
Author(s):  
Jonas Hensel ◽  
Arne Kromm ◽  
Thomas Nitschke-Pagel ◽  
Jonny Dixneit ◽  
Klaus Dilger

Abstract The use of low transformation temperature (LTT) filler materials represents a smart approach for increasing the fatigue strength of welded high strength steel structures apart from the usual procedures of post weld treatment. The main mechanism is based on the effect of the low start temperature of martensite formation on the stress already present during welding. Thus, compressive residual stress formed due to constrained volume expansion in connection with phase transformation become highly effective. Furthermore, the weld metal has a high hardness that can delay the formation of fatigue cracks but also leads to low toughness. Fundamental investigations on the weldability of an LTT filler material are presented in this work, including the characterization of the weld microstructure, its hardness, phase transformation temperature and mechanical properties. Special attention was applied to avoid imperfections in order to ensure a high weld quality for subsequent fatigue testing. Fatigue tests were conducted on the welded joints of the base materials S355J2 and S960QL using conventional filler materials as a comparison to the LTT filler. Butt joints were used with a variation in the weld type (DY-weld and V-weld). In addition, a component-like specimen (longitudinal stiffener) was investigated where the LTT filler material was applied as an additional layer. The joints were characterized with respect to residual stress, its stability during cyclic loading and microstructure. The results show that the application of LTT consumables leads to a significant increase in fatigue strength when basic design guidelines are followed. This enables a benefit from the lightweight design potential of high-strength steel grades.


2018 ◽  
Vol 941 ◽  
pp. 269-273
Author(s):  
Constant Ramard ◽  
Denis Carron ◽  
Philippe Pilvin ◽  
Florent Bridier

Multipass arc welding is commonly used for thick plates assemblies in shipbuilding. Sever thermal cycles induced by the process generate inhomogeneous plastic deformation and residual stresses. Metallurgical transformations contribute at each pass to the residual stress evolution. Since residual stresses can be detrimental to the performance of the welded product, their estimation is essential and numerical modelling is useful to predict them. Finite element analysis of multipass welding of a high strength steel is achieved with a special emphasis on mechanical and metallurgical effects on residual stress. A welding mock-up was specially designed for experimental measurements of in-depth residual stresses using contour method and deep hole drilling and to provide a simplified case for simulation. The computed results are discussed through a comparison with experimental measurements.


1976 ◽  
Vol 98 (2) ◽  
pp. 173-178 ◽  
Author(s):  
T. Yukitoshi ◽  
K. Nishida ◽  
T. Oda ◽  
T. Daikoku

High-strength steel tube HCM9M (LowC-9Cr-2Mo) steel, which shows the intermediate high-temperature strength between austenitic stainless steels and commercial low-alloy steels, has been developed. It has superior weldability, workability and oxidation resistivity. At present HCM9M tubes have been in-service test as reheater and superheater tubing at the 165,000 kW boiler in Japan without trouble. This report deals with the practical properties of HCM9M steel, service test experience and high temperature strengthening mechanism of the steel from morphological viewpoint of carbide.


2012 ◽  
Vol 138 (12) ◽  
pp. 1446-1454 ◽  
Author(s):  
Huiyong Ban ◽  
Gang Shi ◽  
Yongjiu Shi ◽  
Yuanqing Wang

Sign in / Sign up

Export Citation Format

Share Document