Seismic performance of single layer steel cylindrical lattice shells

2019 ◽  
Vol 163 ◽  
pp. 105772 ◽  
Author(s):  
F. Cedrón ◽  
A.Y. Elghazouli
2014 ◽  
Vol 14 (4) ◽  
pp. 901-911 ◽  
Author(s):  
Dewen Kong ◽  
Feng Fan ◽  
Xudong Zhi

2021 ◽  
Vol 8 (1) ◽  
pp. 119-129
Author(s):  
Fiammetta Venuti

Abstract Free-edge gridshells represent the majority of built gridshells. Indeed, the gridshell reference geometry usually needs to be trimmed in order to provide building access or to insert the gridshell within an existing building, giving rise to one or more elastic boundaries. Despite the current design practice, so far a very limited number of scientific studies has been devoted to investigate the influence of elastic boundaries on the overall structural behaviour of gridshells. This paper focuses on the effects of the orientation of the boundary structure with respect to the grid direction. This is done by studying the buckling behaviour of an ideal single-layer steel gridshell, for different grid layout (quadrangular, hybrid, triangular) and orientation. The results of the parametric study demonstrate that the sensitivity of free-edge single-layer gridshells to the free-edge orientation strongly depends on the grid pattern. In particular, isotropic gridshells have shown an almost negligible influence of the free-edge orientation in terms of buckling load, in opposition to orthotropic gridshells. Moreover, the change in free-edge orientation induces significant variations of the global structural stiffness for all the layouts, resulting in possibly unacceptable displacements in service conditions.


Author(s):  
M. H. Abdelshafy ◽  
S. O. Oyadiji

A finite element analysis using ABAQUS v6.6 has been performed to investigate the penetration behaviour of different target structures under the impact velocities of 1000 & 1200 m/s. The analysis has been performed to study the effect of the target configuration and the effect of introducing a damping material like rubber within the target structure on the penetration behaviour of these targets. Three dimensional (3D) models of targets consisting of various discrete one, two and three layers of hardened steel have been developed. The total thickness of each single or multiple layer steel target is 25 mm. These targets have been subjected to the impact of a projectile which was either blunt or had a hemispherical end and is made from a tungsten rod. Furthermore, 3D models consisting of layers of a damping material sandwiched between steel layers have also been developed and analysed. It is found that a purely steel target of multiple layers but of the same total thickness as a single layer steel target produced less residual velocity. This implies that the multiple layer steel targets produced more penetration resistance and, therefore, absorbed more of the impact energy than the single layer steel target. Similarly, multiple layer composite targets comprising layers of a damping material sandwiched between steel layers produced a greater penetration resistance and less residual velocity than a single layer steel target. However, the multiple layer composite targets only produced a slightly greater penetration resistance and less residual velocity than a multiple layer steel target.


Sign in / Sign up

Export Citation Format

Share Document