Progressive collapse analysis of a truss transmission tower-line system subjected to downburst loading

2022 ◽  
Vol 188 ◽  
pp. 107044
Author(s):  
Hua-Dong Zheng ◽  
Jian Fan
Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 2166-2176
Author(s):  
Hao Zhou ◽  
Youbao Jiang ◽  
Sondipon Adhikari ◽  
Qianqian Yin ◽  
Jianguo Cai

1992 ◽  
Vol 114 (1) ◽  
pp. 1-8
Author(s):  
T. C. Thuestad ◽  
F. G. Nielsen

The Oseberg jacket was installed at the Oseberg field in the North Sea during the summer of 1987 and the production started on December 1, 1988. On March 6, 1988, a submarine accidentally impacted with the Oseberg jacket. This paper presents results from the evaluation of the importance of the damage to the overall structural safety. A nonlinear progressive collapse analysis is applied for the safety check. The theoretical computations are verified through evaluation of strain and acceleration time series recorded during the submarine impact. The reduction in the overall structural capacity of the jacket was in the order of 10 percent. However, the local member capacity was significantly reduced and it was necessary to remove the damaged member in order to obtain the initial level of safety.


2016 ◽  
Vol 123 ◽  
pp. 31-40 ◽  
Author(s):  
Behrouz Asgarian ◽  
Soheil Dadras Eslamlou ◽  
Arash E. Zaghi ◽  
Masoud Mehr

2021 ◽  
Vol 9 ◽  
Author(s):  
Jiaxiang Li ◽  
Biao Wang ◽  
Jian Sun ◽  
Shuhong Wang ◽  
Xiaohong Zhang ◽  
...  

Ice shedding causes transmission lines to vibrate violently, which induces a sharp increase in the longitudinal unbalanced tension of the lines, even resulting in the progressive collapse of transmission towers in serious cases, which is a common ice-based disaster for transmission tower-line systems. Based on the actual engineering characteristics of a 500 kV transmission line taken as the research object, a finite element model of a two-tower, three-line system is established by commercial ANSYS finite element software. In the modeling process, the uniform mode method is used to introduce the initial defects, and the collapse caused by ice shedding and its influencing parameters are systematically studied. The results show that the higher the ice-shedding height is, the greater the threat of ice shedding to the system; furthermore, the greater the span is, the shorter the insulator length and the greater the dynamic response of the line; the impact of ice shedding should be considered in the design of transmission towers.


Sign in / Sign up

Export Citation Format

Share Document