Seismic performance of welded flange plate (WFP) connections in composite steel structures

2022 ◽  
Vol 189 ◽  
pp. 107103
Author(s):  
Mohammad Javad Masoudi ◽  
Pooyan Broumand
2021 ◽  
Author(s):  
Takuma Rokutani ◽  
Kazutoshi Nagata ◽  
Takeshi Kitahara

<p>In Japan, many steel structures were constructed during the period of the high economic miracle, and they are now more than 50 years old and are aging. Corrosion has been confirmed at corners and the boundary of concrete-wrapped concrete in steel piers. It was found that corrosion damage at the corner of steel piers causes a decrease of seismic performance in our previous investigations that carried out seismic response analysis. Subsequently, in this study, the effect of corrosion damage at the near ground edge of steel bridge piers with a rectangular cross-section was investigated in detail on the buckling behaviour and seismic performance of structures. As a result, it is found that the buckling at the base causes a decrease in load bearing performance compared to the buckling in the entire panel. It is necessary to properly maintain to prevent buckling at the base caused by corrosion.</p>


2020 ◽  
Vol 219 ◽  
pp. 110855
Author(s):  
Xianzhi Zeng ◽  
Kailai Deng ◽  
Masahiro Kurata ◽  
Jiahong Duan ◽  
Canhui Zhao

Vibration ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 464-477
Author(s):  
Panagiota Katsimpini ◽  
Foteini Konstandakopoulou ◽  
George A. Papagiannopoulos ◽  
Nikos Pnevmatikos ◽  
George D. Hatzigeorgiou

Premature and simultaneous buckling of several steel braces in steel structures due to the prolonged duration of a seismic motion is one of the issues that must be addressed in the next version of Eurocode 8. In an effort to contribute towards the improvement of the seismic design provisions of Eurocode 8, an evaluation of the overall behavior of some steel building-foundation systems under the action of long duration seismic motions is performed herein by means of nonlinear time-history seismic analyses, taking into account soil–structure interaction (SSI) effects. In particular, the maximum seismic response results—in terms of permanent interstorey drifts, overturning moments and base shears of the steel buildings as well as of the permanent settlement and tilting of their foundations—are computed. It is found that the seismic performance of steel buildings when subjected to long duration seismic motions is: (i) acceptable for the two and five-storey fixed base steel buildings and for the two-storey steel buildings with SSI effects included; (ii) unacceptable for the eight-storey fixed base steel buildings and for the five and eight-storey steel buildings with SSI effects included. In all cases of steel buildings with SSI effects included, the seismic performance of the mat foundation, as expressed by the computed values of residual settlement and tilting, is always acceptable.


2016 ◽  
Vol 14 (12) ◽  
pp. 3613-3639 ◽  
Author(s):  
Marco Valente ◽  
Carlo A. Castiglioni ◽  
Alper Kanyilmaz

Sign in / Sign up

Export Citation Format

Share Document