scholarly journals Logics for unordered trees with data constraints

2019 ◽  
Vol 104 ◽  
pp. 149-164 ◽  
Author(s):  
Adrien Boiret ◽  
Vincent Hugot ◽  
Joachim Niehren ◽  
Ralf Treinen
Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 232
Author(s):  
Jie Zheng ◽  
Lisha Na ◽  
Binglin Liu ◽  
Tiantian Zhang ◽  
Hao Wang

Suburban rural landscape multifunction has received increasing attention from scholars due to its high demand and impact on main urban areas. However, few studies have been focused on suburban rural landscape multifunction because of data constraints. The present study quantified the four landscape services based on ecological service system, i.e., regulating function (RF), provision function (PF), culture function (CF), and support function (SF), determined the interaction through the Spearman correlation coefficient, and ultimately identified the landscape multifunction hotspots and dominant functions through overlay analysis. The result indicated that suburban rural communities have exhibited the characteristics of regional multifunction, and the landscape multifunction hotspots accounted for 64.2%; it should be particularly noted that, among single-function, dual-function, and multifunction hotspots, both support function, and culture function was dominant, while only one case was found in which the regulating function was dominant. Furthermore, all landscape functions other than SF-CF exhibited certain correlations. The study suggests that planning and management should be performed in future in combination with landscape multifunction to ensure the sustainable development of suburban rural communities.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1792
Author(s):  
Juan Hagad ◽  
Tsukasa Kimura ◽  
Ken-ichi Fukui ◽  
Masayuki Numao

Two of the biggest challenges in building models for detecting emotions from electroencephalography (EEG) devices are the relatively small amount of labeled samples and the strong variability of signal feature distributions between different subjects. In this study, we propose a context-generalized model that tackles the data constraints and subject variability simultaneously using a deep neural network architecture optimized for normally distributed subject-independent feature embeddings. Variational autoencoders (VAEs) at the input level allow the lower feature layers of the model to be trained on both labeled and unlabeled samples, maximizing the use of the limited data resources. Meanwhile, variational regularization encourages the model to learn Gaussian-distributed feature embeddings, resulting in robustness to small dataset imbalances. Subject-adversarial regularization applied to the bi-lateral features further enforces subject-independence on the final feature embedding used for emotion classification. The results from subject-independent performance experiments on the SEED and DEAP EEG-emotion datasets show that our model generalizes better across subjects than other state-of-the-art feature embeddings when paired with deep learning classifiers. Furthermore, qualitative analysis of the embedding space reveals that our proposed subject-invariant bi-lateral variational domain adversarial neural network (BiVDANN) architecture may improve the subject-independent performance by discovering normally distributed features.


Author(s):  
Ana Debón ◽  
Steven Haberman ◽  
Francisco Montes ◽  
Edoardo Otranto

The parametric model introduced by Lee and Carter in 1992 for modeling mortality rates in the USA was a seminal development in forecasting life expectancies and has been widely used since then. Different extensions of this model, using different hypotheses about the data, constraints on the parameters, and appropriate methods have led to improvements in the model’s fit to historical data and the model’s forecasting of the future. This paper’s main objective is to evaluate if differences between models are reflected in different mortality indicators’ forecasts. To this end, nine sets of indicator predictions were generated by crossing three models and three block-bootstrap samples with each of size fifty. Later the predicted mortality indicators were compared using functional ANOVA. Models and block bootstrap procedures are applied to Spanish mortality data. Results show model, block-bootstrap, and interaction effects for all mortality indicators. Although it was not our main objective, it is essential to point out that the sample effect should not be present since they must be realizations of the same population, and therefore the procedure should lead to samples that do not influence the results. Regarding significant model effect, it follows that, although the addition of terms improves the adjustment of probabilities and translates into an effect on mortality indicators, the model’s predictions must be checked in terms of their probabilities and the mortality indicators of interest.


2016 ◽  
Vol 389 ◽  
pp. 237-252
Author(s):  
Farah Ben-Naoum ◽  
Christophe Godin
Keyword(s):  

2018 ◽  
Vol 110 (1) ◽  
pp. 43-70 ◽  
Author(s):  
Martin Popel ◽  
Ondřej Bojar

Abstract This article describes our experiments in neural machine translation using the recent Tensor2Tensor framework and the Transformer sequence-to-sequence model (Vaswani et al., 2017). We examine some of the critical parameters that affect the final translation quality, memory usage, training stability and training time, concluding each experiment with a set of recommendations for fellow researchers. In addition to confirming the general mantra “more data and larger models”, we address scaling to multiple GPUs and provide practical tips for improved training regarding batch size, learning rate, warmup steps, maximum sentence length and checkpoint averaging. We hope that our observations will allow others to get better results given their particular hardware and data constraints.


Sign in / Sign up

Export Citation Format

Share Document