Predictors of manufacturing (MFG) success for chimeric antigen receptor (CAR) T cells in Non-Hodgkin Lymphoma (NHL)

Cytotherapy ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. S118-S119 ◽  
Author(s):  
M.M. Davis ◽  
A. Fesnak ◽  
R.M. Leskowitz ◽  
J.S. McKee ◽  
Y. Ohayon ◽  
...  
2019 ◽  
Vol 25 (3) ◽  
pp. S63 ◽  
Author(s):  
Carlos A. Ramos ◽  
Mrinalini Bilgi ◽  
Claudia Gerken ◽  
Olga Dakhova ◽  
Zhuyong Mei ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1730-1730
Author(s):  
Ying Zhang ◽  
Jiaqi Li ◽  
Xiangping Zong ◽  
Jin Zhou ◽  
Sixun Jia ◽  
...  

Abstract Objective: Despite the remarkable success of chimeric antigen receptor modified T (CAR-T) cell therapy for refractory or relapsed B cell non-Hodgkin lymphoma (R/R B-NHL), high rates of treatment failure and relapse after CAR-T cell therapy are considerable obstacles to overcome. Preclinical models have demonstrated that anti-PD-1 antibody is an attractive option following CAR-T therapy to reverse T cell exhaustion. Thus, we investigated their combination in R/R B-NHL. Methods: We performed a prospective, single-arm study of CAR-T cell combined with anti-PD-1 antibody treatment in R/R B-NHL (NCT04539444). Anti-PD-1 antibody was administrated on day 1 after patients received sequential infusion of anti-CD19 and anti-CD22 second-generation CAR-T cells, and the efficacy and safety of the combination treatment were evaluated. Results: From August 1, 2020 to June 30, 2021, a total of 11 patients were enrolled and completed at least 3 months follow-up. The median follow-up time is 5.8 months. Overall response was achieved in 9 of 11 patients (81.8%), and the complete response (CR) was achieved in 8 of 11 patients (72.7%). All 8 patients achieving CR still sustained remission at the last follow-up. The progression-free survival (PFS) and overall survival (OS) rates at 6 months were 80.8% and 100.0%, respectively. Cytokine release syndrome (CRS) occurred in only 4 patients (all were grade 1), and no neurotoxicity were observed. Conclusion: This study suggests that CAR-T cells combined with anti-PD-1 antibody elicit a safe and durable response in R/R B-NHL. Keywords: chimeric antigen receptor modified T cell, anti-PD-1 antibody, CD19/CD22, refractory or relapsed B cell non-Hodgkin lymphoma Disclosures No relevant conflicts of interest to declare. OffLabel Disclosure: We use the T cells were transduced with a lentivirus encoding the CD19-4-1BB-CD3 z and CD22-4-1BB-CD3 ztransgene to produce CAR-T cells. The main purpose of our study is to improve the response rate in patients with R/R B-NHL.


2019 ◽  
Vol 37 ◽  
pp. 168-168 ◽  
Author(s):  
C.A. Ramos ◽  
V. Torrano ◽  
M. Bilgi ◽  
C. Gerken ◽  
O. Dakhova ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2829-2829
Author(s):  
George E. Hucks ◽  
Barbara Savoldo ◽  
Gianpietro Dotti ◽  
Catherine Joyce Arago Cheng ◽  
Caroline Babinec ◽  
...  

Abstract Background: Chimeric antigen receptor (CAR)-T cell therapy targeting the CD19 antigen has been effective in treating B-cell acute lymphoblastic leukemia. As CAR-T cells targeting new antigens are being explored for the treatment of other cancers in adults, parallel studies are warranted for pediatric cohorts. We have previously shown the safety and efficacy in adults of CAR-T cells targeting CD30, which is expressed in classical Hodgkin Lymphoma (HL) and in some Non-Hodgkin Lymphoma (NHL). We have therefore sought to study the feasibility and the safety of CD30.CAR-T cells in pediatric patients with relapsed/refractory CD30-expressing HL and Anaplastic Large Cell Lymphoma (ALCL). Design/Methods: Six pediatric patients (ages 9 to 17 years) with CD30+ HL (4) and NHL (2) were enrolled on two trials at the University of North Carolina. One NHL patient with ALK+ ALCL was enrolled on both trials. Two patients, one HL and one NHL, were enrolled on a phase I study and received 2x10 7 CD30.CAR-T cells/m 2 as consolidation for high-risk of relapse after autologous stem cell transplant (ASCT, NCT02663297). Five patients, 3 HL and 2 NHL, were enrolled on a phase Ib/II study and received 1x10 8 CD30.CAR-T cells/m 2, as treatment for relapsed disease, after lymphodepletion with bendamustine and fludarabine (NCT02690545). HL patients had failed multiple lines of therapies (5-6), including 2 with prior pembrolizumab, 2 with prior ASCT, and all 3 with prior brentuximab vedotin (BV) and radiation therapy. The two NHL patients both had ALCL, one was ALK positive and one was ALK negative. Both had been treated with prior BV. The ALK negative patient had been treated with 3 prior lines of therapy and the ALK positive patient had been treated with 6 lines of prior therapy including ASCT and two ALK inhibitors, crizotinib and brigatinib. The brigatinib was stopped 3 weeks prior to starting lymphodepletion. Results: CD30.CAR-T cells were successfully manufactured for all 7 patients and no differences were observed as compared to products manufactured for adults, based on cell number, transduction, potency or immunophenotype. For all patients, infusions were well-tolerated and no neurotoxicity experienced. On the post-ASCT study, 1 patient with HL and 1 with ALCL were treated. All adverse events (AE) were less than grade 4. The patient with HL remains in complete remission (CR) 41 months following therapy, while the patient with ALCL progressed. Five patients with relapsed/refractory disease (3 HL and 2 ALCL) were treated on the post-lymphodepletion study. Most grade 3 or higher AEs were anticipated hematologic toxicity secondary to lymphodepletion. The youngest HL patient on the study developed symptoms consistent with grade 2 cytokine release syndrome (CRS) and a concomitant pneumonia based on imaging, accompanied by a marked inflammatory response based on labs with maximum ferritin 9,920 ng/mL and CRP 150.7 mg/L. He responded to antibacterial agents and two doses of tocilizumab, as well as brief supplemental oxygen by nasal cannula. He did not require vasopressors. One patient with ALK+ ALCL had symptoms compatible with CRS and macrophage activation syndrome (maximum ferritin >100,000 ng/mL and CRP 39.7 mg/L), which were ultimately determined to be secondary to progressive disease, confirmed at autopsy 5 weeks post therapy. The other four patients (3 HL and 1 ALCL) achieved CR and remain in CR 4 to 27 months post CAR-T cell infusion. Of note, 2 of the HL patients chose to come off study while in CR to receive treatment with checkpoint inhibitor therapy. Conclusion: Our studies show that CD30.CAR-T cells are well tolerated in pediatric patients. CRs were observed in all heavily pre-treated and refractory HL patients, highlighting the potential of this strategy. All patients treated on both studies had previously received BV, which suggests CD30.CAR-T cells are effective even post BV progression. We continue to investigate how to better tailor CD30.CAR-T cells in NHL given the need for better therapies in ALCL, which is often aggressive at relapse. One patient with ALK negative ALCL remains in CR while the patient with ALK+ ALCL had rapid relapse. After study initiation, UNC entered into a research collaboration with Tessa Therapeutics. Disclosures Savoldo: Tessa: Patents & Royalties: Approach for CD30.CAR-T Cells for Hodgkin Lymphoma. Dotti: Tessa: Patents & Royalties: Approach for CD30.CAR-T Cells for Hodgkin Lymphoma. Grover: Tessa: Consultancy; Kite: Other: Advisory Board; Novartis: Consultancy; Genentech: Research Funding; ADC: Other: Advisory Board. Morrison: Vesselon: Consultancy. Riches: Jazz Pharmaceuticals: Other: Payment; ATARA Biotherapeutics: Other: Payment; BioIntelect: Membership on an entity's Board of Directors or advisory committees. Serody: Tessa: Patents & Royalties: Approach for CD30.CAR-T Cells for Hodgkin Lymphoma.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A124-A124
Author(s):  
Letizia Giardino ◽  
Ryan Gilbreth ◽  
Cui Chen ◽  
Erin Sult ◽  
Noel Monks ◽  
...  

BackgroundChimeric antigen receptor (CAR)-T therapy has yielded impressive clinical results in hematological malignancies and it is a promising approach for solid tumor treatment. However, toxicity, including on-target off-tumor antigen binding, is a concern hampering its broader use.MethodsIn selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CAR bearing a low and high affinity single-chain variable fragment (scFv,) binding to the same epitope and cross-reactive with murine GPC3. We characterized low and high affinity CAR-T cells immunophenotype and effector function in vitro, followed by in vivo efficacy and safety studies in hepatocellular carcinoma (HCC) xenograft models.ResultsCompared to the high-affinity construct, the low-affinity CAR maintained cytotoxic function but did not show in vivo toxicity. High-affinity CAR-induced toxicity was caused by on-target off-tumor binding, based on the evidence that high-affinity but not low-affinity CAR, were toxic in non-tumor bearing mice and accumulated in organs with low expression of GPC3. To add another layer of safety, we developed a mean to target and eliminate CAR-T cells using anti-TNFα antibody therapy post-CAR-T infusion. This antibody functioned by eliminating early antigen-activated CAR-T cells, but not all CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from anti-tumor efficacy.ConclusionsSelecting a domain with higher off-rate improved the quality of the CAR-T cells by maintaining cytotoxic function while reducing cytokine production and activation upon antigen engagement. By exploring additional traits of the CAR-T cells post-activation, we further identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that would eliminate early activated CAR-T following antigen engagement in vivo. By combining the reduced affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.Ethics ApprovalAll animal experiments were conducted in a facility accredited by the Association for Assessment of Laboratory Animal Care (AALAC) under Institutional Animal Care and Use Committee (IACUC) guidelines and appropriate animal research approval.


Sign in / Sign up

Export Citation Format

Share Document