In vitro and in vivo evaluation of the taste-masking efficiency of Amberlite IRP88 as drug carries in chewable tablets

2019 ◽  
Vol 49 ◽  
pp. 547-555 ◽  
Author(s):  
Xiaopeng Han ◽  
Shan Zhang ◽  
Zhuodong Chai ◽  
Yangyun Dong ◽  
Wei He ◽  
...  
2018 ◽  
Vol 15 (11) ◽  
pp. 1105-1116
Author(s):  
Basheer Al-Kasmi ◽  
Okba Al Rahal ◽  
Hind El-Zein ◽  
Abdul-Hakim Nattouf

Author(s):  
NAGADANI SWARNALATHA ◽  
VIDYAVATHI MARAVAJHALA

Objective: The aim of the present research work was to prepare and evaluate taste-masked oral disintegrating tablets (ODT) of Fexofenadine hydrochloride. Methods: In the present work, Eudragit EPO, a taste masking agent and Karaya gum (GK) (natural), Sodium starch glycolate, and Croscarmellose sodium (CCS) (semi-synthetic) super disintegrants in three ratios (3, 6,9%) were used. Taste masked granules were prepared by different ratios of the drug: Eudragit EPO (1:1, 1:1.5, 1:2) by wet granulation method. The optimized taste-masked granules (1:2) were selected by sensory evaluation test to prepare 9 Fexofenadine ODT (FH1-FH9) formulations. These were evaluated for different parameters. Then desirability function (DF) was calculated for all formulations using disintegration time (DT), time taken for the tablet to release 90% of the drug (t 90%), and % drug dissolved in 10 min (Q10) as significant parameters. Results: The best formulation (FH6) showed the highest DF value due to less DT and 100% in vitro drug release within 15 min. Thus, FH6 formulation containing 9% CCS was selected as the best among the prepared formulations to which in vivo studies were performed on rabbits to find maximum plasma concentration (Cmax), time taken to reach maximum concentration (tmax), area under the curve (AUC), rate of elimination (Kel), absorption rate (Ka) and half-life(t1/2) and compared with Fexofenadine (Allegra) marketed tablets. Total bioavailability was increased for the test formulation compared to the reference formulation. Conclusion: Fexofenadine was successfully prepared as ODT with increased AUC and decreased tmax to which stability studies were conducted which were found to be stable.


2014 ◽  
Vol 466 (1-2) ◽  
pp. 286-295 ◽  
Author(s):  
Eun-Jin Yi ◽  
Ju-Young Kim ◽  
Yun-Seok Rhee ◽  
Su-Hyeon Kim ◽  
Hyo-Joong Lee ◽  
...  

2012 ◽  
Vol 80 (2) ◽  
pp. 433-442 ◽  
Author(s):  
Mohammed Maniruzzaman ◽  
Joshua S. Boateng ◽  
Marion Bonnefille ◽  
Attila Aranyos ◽  
John C. Mitchell ◽  
...  

Author(s):  
Palekar – Shanbhag P. ◽  
Belatikar S. ◽  
Sahane C.

The present investigation was undertaken with the objective of formulating chlorhexidine diacetate containing fast dissolving oral films to serve as superior alternative to mouthwash, aiming at consumer compliance. Various film forming agents, plasticizers and taste masking agents were evaluated for optimizing the composition of fast dissolving oral films. The potential of arginine hydrochloride as taste masking agent for fast dissolving oral films containing hydroxypropylmethylcellulose E5 (HPMC E5), propylene glycol and sucralose were formulated. Fast dissolving oral films of chlorhexidine diacetate were evaluated for the in vitro dissolution profile and in vitro microbiological assay. Oral films exhibited satisfactory in vitro dissolution profile and in vitro antimicrobial activity. Effect of incorporation of eugenol on the in vivo performance of oral films was evaluated in human volunteers. Arginine hydrochloride and eugenol containing oral films improved effectiveness and acceptability of films with respect to taste masking, mouth feel and mouth freshening without compromising the in vivo dissolution time.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Bauer ◽  
F Dehm ◽  
A Koeberle ◽  
F Pollastro ◽  
G Appendino ◽  
...  

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Sign in / Sign up

Export Citation Format

Share Document