surface ph
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 54)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Bart Hens ◽  
Nidhi Seegobin ◽  
Marival Bermejo ◽  
Yasuhiro Tsume ◽  
Nicola Clear ◽  
...  

2021 ◽  
Vol 20 (11) ◽  
pp. 2241-2248
Author(s):  
M. Yasmin Begum ◽  
Ali Alqahtani

Purpose: To formulate and characterize tizanidine hydrochloride (TZN) and piroxicam (PRX)-loaded bilayer mucoadhesive buccal films with an intention to improve the bioavailability and patient compliance in pain management.Methods: Bilayer buccal films were prepared by solvent evaporation technique using hydroxypropyl methylcellulose (HPMC) 15cps and polyvinylpyrrolidone (PVP K30 as immediate release (IR) layer forming polymers and HPMC K15 M, PVP K 90 along with various muco adhesive polymers (Carbopol P934, sodium alginate, etc), as sustained release (SR) layer forming polymers. The prepared films werecharacterized for thickness, weight variation, folding endurance, surface pH, swelling index,mucoadhesive strength, in vitro residence time, in vitro drug release, ex vivo permeation and drug release kinetics.Results: The prepared films were of largely uniform thickness, weight and drug content. Moisture loss (%) and folding endurance were satisfactory. Surface pH was compatible with salivary fluid. Disintegration time was 85 s for F1 and 115 s for F2 of IR films. In vitro dissolution studies showed 99.12 ± 1.2 % (F1) and 90.36 ± 1.8 % (F2) were released in 45 min. Based on the above results, F1 was chosen as the optimum formulation to be combined with SR layer of TZN. Amongst the SR layers of TZN in vitro drug release. The findings show that of F2 was 98.38 ± 0.82 % and correlated with ex vivo release. Drug release followed zero order release kinetics and mechanism of drug release was non-Fickian type diffusion. In vitro residence time was greater than 5 h.Conclusion: The findings show that the bilayer buccal films demonstrate the dual impact of deliveringPRX instantly from the IR layer, with good controlled release and permeation of TZN from the SR layer, thus providing enhanced therapeutic efficacy, drug bioavailability and patient compliance.


2021 ◽  
pp. 104613
Author(s):  
Yunxiao Li ◽  
Hong Yang ◽  
Jiajia Dang ◽  
Xufeng Yang ◽  
Liang Xue ◽  
...  

Author(s):  
Vedanshu Malviya ◽  
Srikant Pande

The intention of the present study was to formulate the oral dispersible film of Fluoxetine hydrochloride using pullulan as a polymer and to evaluate it with the different parameters. The drug-excipients studies were carried out in order to determine any type of incompatibilities by using Fourier transmission infrared spectroscopy (FT-IR). The oral dispersible films were prepared using solvent casting method using pullulan as a polymer. Glycerin was used as a plasticizer. The prepared films were evaluated for the parameters like physical appearance, thickness, folding endurance, In-vitro disintegration, mechanical properties, surface pH, drug content uniformity, taste evaluation, In-vitro dissolution test and stability study. The X5 formulation was found to be stable and appropriate in its evaluation parameters than compared to other formulations. The folding endurance was found to be 259±2.53, disintegration time was found to be 04±0.69, thickness was found to be 0.081±0.003, tensile strength was found to be 5.55, the % elongation was found to be 27.50, the maximum percentage drug release was found to be 95.80% in 30 minutes. The drug content was found to be 99.86 with surface pH of 6.8. In the stability studies of the formulation the product was found to be stable for 90 days. The oral dispersible film is simple to administer and very much effective for the patients and the prepared film of fluoxetine hydrochloride proves to be potential candidate for safe and effective oral dispersible drug delivery.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
M. Yasmin Begum ◽  
Ali Alqahtani ◽  
Mohammed Ghazwani ◽  
M. M. Ramakrishna ◽  
Umme Hani ◽  
...  

The goal of present investigation was to formulate and evaluate ketorolac tromethamine (KTM) mucoadhesive buccal films. The films were prepared by solvent evaporation method using PVP K30, HPMC K4M, HPMC K15M, carbopol 934, chitosan, and sodium alginate as polymers and propylene glycol as plasticizer. The films were evaluated for thickness, weight variation, folding endurance, surface pH, swelling index, in vitro residence time, in vitro diffusion, release kinetics, ex vivo permeation, in vitro-ex vivo correlation, and in vivo pharmacological activities such as anti-inflammatory and analgesic activity. Thickness, weight, drug content, and folding endurance were found to be uniform for the films. Surface pH was 6.85 ± 0.10 , and swelling index was the highest ( 27.27 ± 0.37 ) for the best film containing carbopol 934 along with sodium alginate and PVP K 30 (formulation code F2). In vitro residence time was greater than 5 h, and in vitro % drug release was 98.71% for F2. It exhibited 55.49% of swelling inhibition at 5 h, and above 38.88% was maintained at even 8 h. The film F2 has shown maximum analgesic response of 17 sec at 5 h, and the response of 11 sec was maintained at even 8 h. The anti-inflammatory and analgesic effect of F2 was found be maximum while sustaining the effect for prolonged period when compared to free drug solution. Thus, KTM mucoadhesive buccal film containing carbopol 934, sodium alginate, and PVP K30 could be an effective alternative for conventional therapy with improved efficacy.


Author(s):  
Huihui Yang ◽  
Jun Chen ◽  
Yuling Liang ◽  
Yanfei Zhang ◽  
Wen Yin ◽  
...  

2021 ◽  
Vol 93 (36) ◽  
pp. 12170-12174
Author(s):  
Jingxin Liu ◽  
Weiwu Li ◽  
Rongsong Li ◽  
Xiuzhao Yin ◽  
Shiliang He ◽  
...  
Keyword(s):  

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3935
Author(s):  
Juan Luis Santiago ◽  
Jose Ramon Muñoz-Rodriguez ◽  
Miguel Angel de la Cruz-Morcillo ◽  
Clara Villar-Rodriguez ◽  
Lucia Gonzalez-Lopez ◽  
...  

Chronic ultraviolet B (UV-B) irradiation is known to be one of the most important hazards acting on the skin and poses a risk of developing photoaging, skin with cutaneous field cancerization (CFC), actinic keratosis (AKs), and squamous cell carcinomas (SCCs). Most of the UV-B light is absorbed in the epidermis, affecting the outermost cell layers, the stratum corneum, and the stratum granulosum, which protects against this radiation and tries to maintain the permeability barrier. In the present work, we show an impairment in the transepidermal water loss, stratum corneum hydration, and surface pH after chronic UV-B light exposure in an immunologically intact mouse model (SKH1 aged mice) of skin with CFC. Macroscopic lesions of AKs and SCCs may develop synchronically or over time on the same cutaneous surface due to both the presence of subclinical AKs and in situ SCC, but also the accumulation of different mutations in keratinocytes. Focusing on skin with CFC, yet without the pathological criteria of AKs or SCC, the presence of p53 immunopositive patches (PIPs) within the epidermis is associated with these UV-B-induced mutations. Reactive epidermis to chronic UV-B exposure correlated with a marked hyperkeratotic hyperplasia, hypergranulosis, and induction of keratinocyte hyperproliferation, while expressing an upregulation of filaggrin, loricrin, and involucrin immunostaining. However, incidental AKs and in situ SCC might show neither hypergranulosis nor upregulation of differentiation markers in the upper epidermis. Despite the overexpression of filaggrin, loricrin, involucrin, lipid enzymes, and ATP-binding cassette subfamily A member 12 (ABCA12) after chronic UV-B irradiation, the permeability barrier, stratum corneum hydration, and surface pH were severely compromised in the skin with CFC. We interpret these results as an attempt to restore the permeability barrier homeostasis by the reactive epidermis, which fails due to ultrastructural losses in stratum corneum integrity, higher pH on skin surface, abundant mast cells in the dermis, and the common presence of incidental AKs and in situ SCC. As far as we know, this is the first time that the permeability barrier has been studied in the skin with CFC in a murine model of SCC induced after chronic UV-B irradiation at high doses. The impairment in the permeability barrier and the consequent keratinocyte hyperproliferation in the skin of CFC might play a role in the physiopathology of AKs and SCCs.


Sign in / Sign up

Export Citation Format

Share Document